精英家教网 > 高中数学 > 题目详情
5.原命题为“若两条直线的斜率相等,则这两条直线平行”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是(  )
A.真、假、真B.假、假、真C.真、真、假D.假、假、假

分析 根据题意判断原命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.

解答 解:“若两条直线的斜率相等,则这两条直线平行”的逆命题是”两条直线平行、两条直线的斜率相等“是假命题,直线斜率可能不存在,
”若两条直线的斜率相等,则这两条直线平行”的否命题是“若两条直线的斜率不相等,则这两条直线不平行”是假命题、直线斜率可能不存在,
若两条直线的斜率相等,则这两条直线平行”是真命题,故其逆否命题是真命题,
故选:B.

点评 本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)当a=1时,求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值(其中e是自然对数的底数);
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则S5=(  )
A.16B.$\frac{16}{81}$C.$\frac{81}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若输出的结果为2,则可输入的实数x值的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{sinα}{sinα+cosα}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(tanα,2),则$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow a=({1,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$满足$({3\overrightarrow a-\overrightarrow b})⊥\overrightarrow c$,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数h(x)=ax3-1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e为自然对数的底数).
(I)若f(x)图象过点(1,-1),求f(x)的单调区间;
(II)若f(x)在区间($\frac{1}{e}$,e)上有且只有一个极值点,求实数a的取值范围;
(III)函数F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,当a>e${\;}^{\frac{10}{3}}$时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,则复数z=$\frac{4+3i}{3-4i}$的共轭复数的虚部是(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}的前n项和S${\;}_{n}=A{q}^{n}+B(q≠0)$,则“A=-B“是“数列{an}是等比数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案