【题目】在直角坐标坐标系中,过点P(1,0)的直线l的参数方程为(为参数, ),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知顶点在极轴上,开口向右的抛物线C经过极坐标为(2, )的点Q.
(1)求C的极坐标方程;
(2)若l与C交于A、B两点,且|PA|=2|PB|,求tan的值。
科目:高中数学 来源: 题型:
【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两地相距海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为,其他费用为每小时元,且该货轮的最大航行速度为海里/小时.
()请将该货轮从甲地到乙地的运输成本表示为航行速度(海里/小时)的函数.
()要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一条准线方程为过椭圆的上顶点A作一条与x轴、y轴都不垂直的直线交椭圆于另一点P,P关于x轴的对称点为Q.
求椭圆的方程;
若直线AP,AQ与x轴交点的横坐标分别为m,n,求证:mn为常数,并求出此常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,是过定点且倾斜角为的直线,在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为 .
(1)写出直线的参数方程,并将曲线的方程为化直角坐标方程;
(2)若曲线与直线相交于不同的两点,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是( )
A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐
B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐
C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐
D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(e+1)
(I)求函数y=f(x)的图象在点(0,f(0))处的切线方程;
(II)若函数g(x)=f(x)-ae-x,求函数g(x)在[1,2]上的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某公司生产的商品A每件售价为5元时,年销售10万件,
(1)据市场调查,若价格每提高一元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多提高多少元?
(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件元,公司拟投入万元作为技改费用,投入万元作为宣传费用。试问:技术革新后生产的该商品销售量m至少应达到多少万件时,才可能使技术革新后的该商品销售收入等于原销售收入与总投入之和?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com