精英家教网 > 高中数学 > 题目详情

(本题满分15分)设椭圆的左、右焦点分别为,上顶点为,过垂直的直线交轴负半轴于点,且

(Ⅰ)求椭圆的离心率;

(Ⅱ)若过三点的圆恰好与直线相切,求椭圆的方程;

(Ⅲ)过的直线与(Ⅱ)中椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

(Ⅰ);(Ⅱ)椭圆的方程为;(Ⅲ)存在,直线的方程为.

【解析】

试题分析:(Ⅰ)由,由 ,可知的中点,由此可得,,设,知, 由题意可知, ,即得,,进一步计算可求出离心率的值. (Ⅱ)由(Ⅰ)知,可求出的外接圆圆心为,即,半径,所以再利用圆心到直线的距离等于半径,可得到关于的方程,解出值,从而得到椭圆的方程.(Ⅲ)这是探索性命题,一般先假设存在,

可设,由题异号, 的内切圆的面积最大,只需最大,此时也最大,而,所以可设直线的方程为,直线与椭圆方程联立,消,再借助韦达定理来解决即可.

试题解析:(Ⅰ)由题的中点.

,则

由题,即

(Ⅱ)由题外接圆圆心为斜边的中点,半径

由题外接圆与直线相切

,即,即

故所求的椭圆的方程为

(Ⅲ)设,由题异号.

的内切圆的半径为,则的周长为

因此要使内切圆的面积最大,只需最大,此时也最大.

由题知,直线的斜率不为零,可设直线的方程为

由韦达定理得,(

,则

有最大值.此时,

的内切圆的面积的最大值为,此时直线的方程为

考点:椭圆的方程,离心率,直线与二次曲线位置关系.

练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年江苏省等五校高三12月第一次联考理科数学试卷(解析版) 题型:填空题

函数的单调递减区间为 .

查看答案和解析>>

科目:高中数学 来源:2015届江苏教育学院附属高中高三上学期期中理科数学试卷(解析版) 题型:填空题

函数= 处取得极小值.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年浙江省嘉兴市高三新高考单科综合调研三文科数学试卷(解析版) 题型:填空题

在等比数列中,,则公比

查看答案和解析>>

科目:高中数学 来源:2014-2015学年浙江省嘉兴市高三新高考单科综合调研三文科数学试卷(解析版) 题型:选择题

是两条不同的直线,是两个不同的平面,有下列四个命题:

① 若

② 若

③若

④ 若.

其中正确命题的序号是( )

A.③④ B.①② C.②④ D.②③

查看答案和解析>>

科目:高中数学 来源:2014-2015学年浙江省嘉兴市高三新高考单科综合调研三理科数学试卷(解析版) 题型:填空题

为数列的前项和,若是非零常数,则称该数列为“和等比数列”;若数列是首项为,公差为的等差数列,且数列是“和等比数列”,则

查看答案和解析>>

科目:高中数学 来源:2014-2015学年浙江省嘉兴市高三新高考单科综合调研三理科数学试卷(解析版) 题型:选择题

已知抛物线,圆,过点作直线,自上而下依次与上述两曲线交于点(如图所示),则 .( )

A.等于1 B.最小值是1 C.等于4 D.最大值是4

查看答案和解析>>

科目:高中数学 来源:2014-2015学年四川省高三12月月考文科数学试卷(解析版) 题型:填空题

已知向量,向量,则方向上的投影为____.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年山东省文登市高三上学期11月考试文科数学试卷(解析版) 题型:填空题

已知函数,当常数时,函数的单调递增区间为 .

查看答案和解析>>

同步练习册答案