精英家教网 > 高中数学 > 题目详情
18.已知全集U={0,1,2,3,4,5},集合A={0,1,3},B={2,4},则∁U(A∪B)等于(  )
A.{5}B.{1,5}C.{3,5}D.{1,3,5}

分析 由集合A,B,先求出A∪B,再由全集U={0,1,2,3,4,5},计算∁U(A∪B).

解答 解:∵全集U={0,1,2,3,4,5},集合A={0,1,3},B={2,4},
∴A∪B={0,1,2,3,4}
∴∁U(A∪B)={5}.
故选:A.

点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知复数z满足$\frac{z-i}{z}$=i,则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{3}$,则b1+b2+…+bn=n2-n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.($\sqrt{2x}$-$\frac{1}{x}$)9的二项式展开式中常数项的二项式系数为84(用符号或数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:[70,90),[90,110),[110,130),[130,150]分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;
(Ⅱ)若规定分数不小于110分的学生为“优秀生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“优秀生与性别有关”?
优秀生非优秀生合计
男生
女生
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}{x≥3-y}\\{y≤x+1}\\{2x-y-3≤0}{\;}\end{array}\right.$,则z=4x+6y+3的取值范围为(  )
A.[17,48]B.[17,49]C.[19,48]D.[19,49]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市要进行城市环境建设,要把一个三角形的区域改造成街心花园,经过测量得到这个三角形区域的三条边分别为56米、72米和112米,问这个区域的面积是多少?(精确到0.1平方米)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{2}$)(ω>0)的最小正周期为3π.
(Ⅰ)求ω的值和函数f(x)在区间$[{-π,\frac{3π}{4}}]$上的最大值和最小值;
(Ⅱ)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2$\sqrt{3}$,c=4,且f($\frac{3}{2}$A)=1,求b和△ABC的面积.

查看答案和解析>>

同步练习册答案