精英家教网 > 高中数学 > 题目详情

正数满足,则的最大值为

A. B. C.1 D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若某正棱台的底面是正方形,上底面边长为4cm,下底面边长为10cm,高为4cm,求此正棱台的全面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin$\frac{π}{6}$的值等于(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=4{sin^2}x+4\sqrt{3}sinxcosx+5$,若不等式f(x)≤m在$[0,\frac{π}{2}]$上有解,则实数m的最小值为(  )
A.5B.-5C.11D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)当x>1时,求证:$2{x^2}+\frac{1}{x^2}>2x+$$\frac{1}{x}>2\sqrt{x}+\frac{1}{{\sqrt{x}}}$;
(2)若a<e,用反证法证明:函数f(x)=xex-ax2(x>0)无零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$对于任意的x∈(1,+∞)恒成立,则(  )
A.a的最小值为-3B.a的最小值为-4C.a的最大值为2D.a的最大值为4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)解不等式-x2+4x+5<0;
(Ⅱ)解不等式$\frac{2x-1}{3x+1}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=$\sqrt{2}$,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求三棱锥B1-EA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某地有居民100000户,其中普通家庭99000户,高收入家庭1000户,从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭40户,高收入家庭80户,依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是4.8%.

查看答案和解析>>

同步练习册答案