精英家教网 > 高中数学 > 题目详情
12.已知F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,离心率为$\frac{1}{2}$,M、N是平面内两点,满足$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,线段NF1的中点P在椭圆上,△F1MN周长为12
(1)求椭圆C的方程;
(2)若与圆x2+y2=1相切的直线l与椭圆C交于A、B,求$\overrightarrow{OA}$$•\overrightarrow{OB}$(其中O为坐标原点)的取值范围.

分析 (1)设|F1P|=m,|F2P|=n,$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,可得F2是线段F1M的中点,又线段NF1的中点P在椭圆上,△F1MN周长为12.可得m+n=2a,2m+2n+4c=12,可得a+c=3.由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,解出即可得出.
(2)如图所示,①当AB⊥x轴时,把x=±1代入椭圆方程可得:$\frac{1}{4}+\frac{{y}^{2}}{3}$=1,解出可得:$\overrightarrow{OA}$$•\overrightarrow{OB}$=-$\frac{5}{4}$.
②当AB的斜率存在时,设切线AB的方程为:y=kx+m.利用切线的性质可得$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,即:m2=1+k2.设A(x1,y1),B(x2,y2).把y=kx+m代入椭圆方程可得:(3+4k2)x2+8kmx+4m2-12=0,把根与系数的关系代入$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=$-\frac{5+5{k}^{2}}{3+4{k}^{2}}$,即可得出.

解答 解:(1)设|F1P|=m,|F2P|=n,
∵$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,∴F2是线段F1M的中点,
又线段NF1的中点P在椭圆上,△F1MN周长为12.
∴m+n=2a,2m+2n+4c=12,可得a+c=3.
由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2
解得a=2,c=1,b2=3.
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)如图所示,
①当AB⊥x轴时,把x=±1代入椭圆方程可得:$\frac{1}{4}+\frac{{y}^{2}}{3}$=1,
解得:y=$±\frac{3}{2}$.
可得:$\overrightarrow{OA}$$•\overrightarrow{OB}$=$1-\frac{9}{4}$=-$\frac{5}{4}$.
②当AB的斜率存在时,设切线AB的方程为:y=kx+m.
则$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,化为:m2=1+k2
设A(x1,y1),B(x2,y2).
把y=kx+m代入椭圆方程可得:(3+4k2)x2+8kmx+4m2-12=0,
△>0.
∴x1+x2=$\frac{-8km}{3+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=km(x1+x2)+k2x1•x2+m2
∴$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=km(x1+x2)+(k2+1)x1•x2+m2
=km•$\frac{-8km}{3+4{k}^{2}}$+(k2+1)$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+m2
=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$
=$-\frac{5+5{k}^{2}}{3+4{k}^{2}}$
=$-\frac{5}{4}$-$\frac{5}{12+16{k}^{2}}$∈$[-\frac{5}{3},-\frac{5}{4})$,
综上可得:$\overrightarrow{OA}$$•\overrightarrow{OB}$∈$[-\frac{5}{3},-\frac{5}{4}]$.

点评 本题考查了直线与椭圆相交问题、一元二次方程的根与系数的关系、直线与圆相切的性质、点到直线的距离公式、数量积运算性质、函数的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA上的中点.
(1)求证:四边形EFGH为平行四边形;
(2)求证:直线BD∥平面EFGH;
(3)若AC⊥BD,且AC=12,BD=8,求四边形EFGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z满足:z(2-i)=3+i(其中i为虚数单位),则z的模等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为(x+1)2+${(y-\sqrt{3})}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+ax+b,m,n满足m<n且f(m)=n,f(n)=m,则当m<x<n时,(  )
A.f(x)+x<m+nB.f(x)+x>m+nC.f(x)-x<0D.f(x)-x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x2e-x,则函数f(x)的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-1-alnx(a<0).
(1)讨论f(x)的单调性;
(2)若对任意x1,x2∈(0,1],且x1≠x2,都有$|f({x_1})-f({x_2})|<4|\frac{1}{x_1}-\frac{1}{x_2}|$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.调查者通过询问64名男女大学生在购买食品时是否看营养说明,得到的数据如表所示:
看营养说明不看营养说明合计
男大学生26632
女大学生141832
合计402464
问大学生的性别与是否看营养说明之间有没有关系?
附:参考公式与数据:χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{n}_{1}{+n}_{2}{{+n}_{+1}n}_{+2}}$.当χ2>3.841时,有95%的把握说事件A与B有关;当χ2>6.635时,有99%的把握说事件A与B有关;当χ2≤3.841时,有95%的把握说事件A与B是无关的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,圆ρ=-2cosθ的圆心C到直线2ρcosθ+ρsinθ-2=0的距离等于$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案