精英家教网 > 高中数学 > 题目详情
17.函数f(x)=x2e-x,则函数f(x)的极小值是0.

分析 通过求导判断函数的单调性,结合极小值的概念可得结论.

解答 解:因为f(x)=x2e-x,x∈R
所以f′(x)=2xe-x-x2e-x=(2-x)xe-x
令f′(x)=0,解得x=0或x=2,
因为当x<0或x>2时f′(x)<0,当0<x<2时f′(x)>0,
所以函数f(x)的单调递增区间为(0,2),单调递减区间为(-∞,0),(2,+∞),
所以当x=0时取得极小值f(0)=0,
故答案为:0.

点评 本题考查利用导数研究函数的极值,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,互相垂直的两条道路l1、l2相交于O点,点P与l1、l2的距离分别为2千米、3千米,过点P建一条直线道路AB,与l1、l2分别交于A、B两点. 
(1)当∠BAO=45°时,试求OA的长;
(2)若使△AOB的面积最小,试求OA、OB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.
(1)证明:B1C1⊥平面BDE;
(2)求二面角D-BE-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,则b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,离心率为$\frac{1}{2}$,M、N是平面内两点,满足$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,线段NF1的中点P在椭圆上,△F1MN周长为12
(1)求椭圆C的方程;
(2)若与圆x2+y2=1相切的直线l与椭圆C交于A、B,求$\overrightarrow{OA}$$•\overrightarrow{OB}$(其中O为坐标原点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax,g(x)=x+a.
(Ⅰ)若f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)若对于任意的x1∈[0,1],存在x2∈[0,1],使得f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(1+x)(a-x)6=a0+a1x+a2x2+…+a7x7,其中a=${∫}_{0}^{π}$(sinx-cosx)dx,则a0+a1+a2+…+a6的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=asinx+bcosx(x∈R),若x=x0是函数f(x)的一条对称轴,且tanx0=3,则点(a,b)所在的直线为(  )
A.x-3y=0B.x+3y=0C.3x-y=0D.3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P是曲线y=x-$\frac{1}{2}$x2-lnx上的一个动点,记此曲线在点P点处的切线的倾斜角为θ,则θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[$\frac{3π}{4}$,π)D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

查看答案和解析>>

同步练习册答案