精英家教网 > 高中数学 > 题目详情
7.设P是曲线y=x-$\frac{1}{2}$x2-lnx上的一个动点,记此曲线在点P点处的切线的倾斜角为θ,则θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[$\frac{3π}{4}$,π)D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

分析 求出原函数的导函数,利用基本不等式求出导函数的值域,结合直线的斜率是直线倾斜角的正切值求解.

解答 解:由y=x-$\frac{1}{2}$x2-lnx,得y′=1-x-$\frac{1}{x}$(x>0),
∵1-x-$\frac{1}{x}$=1-(x+$\frac{1}{x}$)$≤1-2\sqrt{x•\frac{1}{x}}=-1$,
当且仅当x=1时上式“=”成立.
∴y′≤-1,即曲线在点P点处的切线的斜率小于等于-1.
则tanθ≤-1,
又θ∈[0,π),
∴θ∈($\frac{π}{2},\frac{3π}{4}$].
故选:A.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x2e-x,则函数f(x)的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:x-y+3=0被圆C:(x-a)2+(y-2)2=4(a>0)截得的弦长为$2\sqrt{2}$,求
(1)a的值;
(2)求过点(3,5)并与圆C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b∈R且a<b,若a3eb=b3ea,则下列结论中一定正确的个数是(  )
①a+b>6;②ab<9;③a+2b>9;④a<3<b.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,圆ρ=-2cosθ的圆心C到直线2ρcosθ+ρsinθ-2=0的距离等于$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ex+x2-ex,则f′(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某四棱锥的三视图如图所示,则该四棱锥的侧面积为(  )
A.8B.8+4$\sqrt{10}$C.4$\sqrt{10}$+2$\sqrt{13}$D.2$\sqrt{10}$+$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.多项式1+x+(1+x)2+(1+x)3+…+(1+x)5的展开式中,x项的系数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在方程|x|+|y|=1表示的曲线所围成的区域内(包含边界)任取一点P(x,y),则z=xy的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案