精英家教网 > 高中数学 > 题目详情
16.多项式1+x+(1+x)2+(1+x)3+…+(1+x)5的展开式中,x项的系数为15.

分析 由题意可得含x项的系数为1+${C}_{2}^{1}$+${C}_{3}^{1}$+${C}_{4}^{1}$+${C}_{5}^{1}$,计算求的结果.

解答 解:多项式1+x+(1+x)2+(1+x)3+…+(1+x)5的展开式中,含x项的系数为1+${C}_{2}^{1}$+${C}_{3}^{1}$+${C}_{4}^{1}$+${C}_{5}^{1}$=1+2+3+4+5=15,
故答案为:15.

点评 本题主要考查二项式定理的应用,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=asinx+bcosx(x∈R),若x=x0是函数f(x)的一条对称轴,且tanx0=3,则点(a,b)所在的直线为(  )
A.x-3y=0B.x+3y=0C.3x-y=0D.3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P是曲线y=x-$\frac{1}{2}$x2-lnx上的一个动点,记此曲线在点P点处的切线的倾斜角为θ,则θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[$\frac{3π}{4}$,π)D.[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tan($\frac{α}{2}$+$\frac{π}{4}$)=-2,则cosα的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数f(x)=cos2($\frac{π}{2}$x-$\frac{π}{6}$)的图象向左平移$\frac{1}{3}$个单位后得到的函数为g(x),则以下结论中正确的是(  )
A.g($\frac{1}{5}$)>g($\frac{8}{5}$)>0B.g($\frac{1}{5}$)$>0>g(\frac{8}{5})$C.g($\frac{8}{5}$)>g($\frac{1}{5}$)>0D.g($\frac{1}{5}$)=g($\frac{8}{5}$)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函数f(x)的最小值,并写出此时x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|+|x-a|
(1)若函数f(x)的值域为[2,+∞),求实数a的值
(2)若f(2-a)≥f(2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市对贫困家庭自主创业给予小额贷款补贴,每户贷款为2万元,贷款期限有6个月、12个月、18个月、24个月、36个月五种,这五种贷款期限政府分别需要补助200元、300元、300元、400元,从2016年享受此项政策的困难户中抽取了100户进行了调查,选取贷款期限的频数如表:
 贷款期限  6个月  12个月  18个月  24个月  36个月
 频数 20 40 20 10 10
以上表各种贷款期限频率作为2017年贫困家庭选择各种贷款期限的概率.
(1)某小区2017年共有3户准备享受此项政策,计算其中恰有两户选择贷款期限为12个月的概率;
(2)设给享受此项政策的某困难户补贴为ξ元,写出ξ的分布列,若预计2017年全市有3.6万户享受此项政策,估计2017年该市共需要补贴多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数x,y满足$\left\{\begin{array}{l}x-2y+2≥0\\ x+y≤1\\ y+1≥0\end{array}\right.$且z=2x-y,则z的最大值为(  )
A.-7B.-1C.5D.7

查看答案和解析>>

同步练习册答案