精英家教网 > 高中数学 > 题目详情
16.已知复数z满足:z(2-i)=3+i(其中i为虚数单位),则z的模等于$\sqrt{2}$.

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:z(2-i)=3+i(其中i为虚数单位),
∴z(2-i)(2+i)=(3+i)(2+i),
∴5z=5+5i,可得z=1+i
|z|=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω=$\frac{2}{3}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{2-i}{2+i}$-$\frac{2+i}{2-i}$,则z=(  )
A.$\frac{6}{5}$iB.$\frac{8i}{5}$C.-$\frac{8i}{5}$D.-$\frac{6}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知过点P(2,-2)的直线l与曲线y=$\frac{1}{3}$x3-x相切,则直线l的方程为y=-x或y=8x-18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-a-lnx.
(Ⅰ)试讨论f(x)的单调性;
(Ⅱ)若f(x)+$\frac{e}{{e}^{x}}$-$\frac{1}{x}$>0在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.
(1)证明:B1C1⊥平面BDE;
(2)求二面角D-BE-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若样本平均数为$\overline{x}$,总体平均数为μ,则(  )
A.$\overline{x}$=μB.$\overline{x}$≈μC.μ是$\overline{x}$的估计值D.$\overline{x}$是μ的估计值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,离心率为$\frac{1}{2}$,M、N是平面内两点,满足$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,线段NF1的中点P在椭圆上,△F1MN周长为12
(1)求椭圆C的方程;
(2)若与圆x2+y2=1相切的直线l与椭圆C交于A、B,求$\overrightarrow{OA}$$•\overrightarrow{OB}$(其中O为坐标原点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某条曲线的参数方程是$\left\{\begin{array}{l}x=2(t+\frac{1}{t})\\ y=2(t-\frac{1}{t})\end{array}$(t是参数),则该曲线是(  )
A.直线B.C.椭圆D.双曲线

查看答案和解析>>

同步练习册答案