分析 (1)推导出EH∥BD,且 EH=$\frac{1}{2}$BD,FG∥BD,且 FG=$\frac{1}{2}$BD,由此能证明四边形EFGH为平行四边形.
(2)由BD∥EH,能证明BD∥平面EFGH.
(3)推导出EF∥AC,且 EF=$\frac{1}{2}$AC=6,EH∥BD,且 EH=$\frac{1}{2}$BD=4,由AC⊥BD,得EH⊥EF,从而四边形EFGH为矩形,由此能求出四边形EFGH的面积.
解答 证明:(1)在△ABD中,∵E为AB中点,H为AD中点,![]()
∴EH∥BD,且 EH=$\frac{1}{2}$BD,…(1分)
同理:FG∥BD,且 FG=$\frac{1}{2}$BD,…(2分)
∴EH∥FG,且EH=FG,
∴四边形EFGH为平行四边形. …(4分)
(2)由(1)知,BD∥EH,
又BD?平面EFGH,EH?平面EFGH…(7分)
∴BD∥平面EFGH…(8分)
解:(3)在△ABC中,∵E为AB中点,F为BC中点,AC⊥BD,且AC=12,BD=8,
∴EF∥AC,且 EF=$\frac{1}{2}$AC=6,…(10分)
又EH∥BD,且 EH=$\frac{1}{2}$BD=4,…(12分)
由AC⊥BD,得EH⊥EF,即四边形EFGH为矩形,
∴四边形EFGH的面积S=EH•EF=24…(14分)
点评 本题考查四边形为平行四边形的证明,考查线面平行的证明,考查四边形的面积的求法,考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{5}$i | B. | $\frac{8i}{5}$ | C. | -$\frac{8i}{5}$ | D. | -$\frac{6}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com