分析 (1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),两式作差,即可证明{an}为等差数列,从而求出an.
(2)由an=3n-1,推导出bn=$\frac{1}{3}$($\sqrt{3n+2}$-$\sqrt{3n-1}$),由此利用裂项求和法能求出数列{bn}的前n.
解答 解:(1)∵6Sn=(an+1)(an+2),
∴6Sn+1=(an+1+1)(an+1+2),
∴(an+an-1)(an-an-1-3)=0,
∵an>0,
∴an-an-1=3,
∴{an}为等差数列
∵6S1=(a1+1)(a1+2),
∵a1>1,
∴a1=2,
∴an=3n-1,
(2)bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{3n-1}+\sqrt{3n+2}}$=$\frac{1}{3}$($\sqrt{3n+2}$-$\sqrt{3n-1}$),
∴{bn}的前n项和为$\frac{1}{3}$$\sum_{i=1}^{n}$($\sqrt{3i+2}$-$\sqrt{3i-1}$)=$\frac{1}{3}$($\sqrt{3n+2}$-$\sqrt{2}$)
点评 本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | [2,+∞) | C. | [4,8] | D. | [2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a}{a+b}$与$\frac{c}{c+d}$ | B. | $\frac{a}{c+d}$与$\frac{c}{a+b}$ | C. | $\frac{a}{a+d}$与$\frac{c}{b+c}$ | D. | $\frac{a}{b+d}$与$\frac{c}{a+c}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com