精英家教网 > 高中数学 > 题目详情
5.在列联表中,哪两个比值相差越大,两个分类变量之间的关系越强(  )
A.$\frac{a}{a+b}$与$\frac{c}{c+d}$B.$\frac{a}{c+d}$与$\frac{c}{a+b}$C.$\frac{a}{a+d}$与$\frac{c}{b+c}$D.$\frac{a}{b+d}$与$\frac{c}{a+c}$

分析 当ad与bc差距越大,两个变量有关的可能性就越大,则分类变量X和Y有关系,ad与bc差距会比较大,进而可得答案.

解答 解:∵k2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
则分类变量X和Y有关系时,ad与bc差距会比较大,
由|$\frac{a}{a+b}$-$\frac{c}{c+d}$|=|$\frac{ac+ad-ac-bc}{(a+b)(c+d)}$|=$\frac{|ad-bc|}{(a+b)(c+d)}$,
故$\frac{a}{a+b}$与$\frac{c}{c+d}$的比值相差应该最大.
故选:A.

点评 本题考查了独立性检验的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知两点A(0,1),B(1,0),且|MA|=2|MB|,求证:点M的轨迹方程为(x-$\frac{4}{3}$)2+(y+$\frac{1}{3}$)2=$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=3x-2ln$\frac{|x|}{2}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A,B,C所对的边长分别为a,b,c,且S△ABC=3,0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,函数f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ.
(1)求角A的取值范围;
(2)求f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-$\frac{ax}{2}$,(a>0)
(1)讨论函数f(x)的单调性;
(2)若对任意的a∈[1,2),都存在x0∈(0,1]使得不等式f(x0)+ea-$\frac{a}{2}$>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上过F的两个端点,设线段AB的中点M在l上的摄影为N,则$\frac{|MN|}{|AB|}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲线y=f(x)在点P(1,f(1))处的切线;
(Ⅱ)若函数y=f(x)在定义域上单调递增,求实数a的取值范围;
(Ⅲ)设f(x)有两个极值点x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC是锐角三角形,向量$\overrightarrow{m}$=(cos(A+$\frac{π}{3}$),sin(A+$\frac{π}{3}$)),$\overrightarrow{n}$=(cosB,sinB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A-B的值;
(Ⅱ)若cosB=$\frac{3}{5}$,AC=8,求BC的长.

查看答案和解析>>

同步练习册答案