精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{{5}^{|x-1|}-1,x≥0}\\{{x}^{2}+4x+4,x<0}\end{array}\right.$,则关于x的方程f2(x)-5(f(x)+4=0的实数根的个数为(  )
A.2B.3C.6D.7

分析 求出f(x)的值,根据f(x)的函数图象判断根的个数.

解答 解:∵f2(x)-5(f(x)+4=0,
∴f(x)=4或f(x)=1.
做出f(x)的函数图象如下:

由图象可知方程f(x)=4有3个根,方程f(x)=4有4个根,
∴方程f2(x)-5(f(x)+4=0的实数根共有7个.
故选D.

点评 本题考查了根的个数判断,分段函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知cos(α-30°)+sinα=$\frac{3}{5}\sqrt{3}$,那么cos(60°-α)=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l为2ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$.
(1)判断曲线C与直线l的位置关系,写出直线l的参数方程;
(2)设直线l与曲线C的两个交点为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市有中型水库1座,小型水库3座,当水库的水位超过警戒水位时就需要泄洪.气象部门预计,今年夏季雨水偏多,中型水库需要泄洪的概率为$\frac{2}{5}$,小弄水库需要泄洪的概率为$\frac{1}{2}$,假设每座水库是否泄洪相互独立.
(1)求至少有一座水库需要泄洪的概率;
(2)设1座中型水库泄洪造成的损失量为2个单位,1座小型水库泄洪造成的损失量为1个单位,设ξ表示这4座水库泄洪所造成的损失量之和,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x•x2=1的实数解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,则使得z=2y-3x取得最小值的最优解是(  )
A.(1,0)B.(0,-2)C.(0,0)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克).重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图.
(1)根据频率分布直方图,求重量超过505克的产品数量,
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列;
(3)从该流水线上任取5件产品,设ξ为重量超过505克的产品数量,求P(ξ=2)及ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=a(x2-2x+1)+lnx,a∈R.
(1)当$a=-\frac{1}{4}$时,求函数y=f(x)的单调区间;
(2)若函数f(x)≤x-1对?x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设抛物线C:y2=4x的焦点为F,直线l过点M(2,0)且与C交于A,B两点,|BF|=$\frac{3}{2}$,若|AM|=λ|BM|,则λ=(  )
A.$\frac{3}{2}$B.2C.4D.6

查看答案和解析>>

同步练习册答案