精英家教网 > 高中数学 > 题目详情
3.已知f(x)=-x2+2x+3,若函数g(x)=f(x)-mx.若在区间[-2,2]上是单调函数,求实数m的取值范围{m|m≤-2或m≥6}.

分析 求出g(x)的解析式,根据二次函数的性质得到关于m的不等式,解出即可.

解答 解:∵f(x)=-x2+2x+3,
∴g(x)=f(x)-mx=-x2+(2-m)x+3,
若g(x)在区间[-2,2]上是单调函数,
则$\frac{2-m}{2}$≤-2或$\frac{2-m}{2}$≥2,
解得:m≥6或m≤-2,
故答案为:{m|m≤-2或m≥6}.

点评 本题考查了函数的单调性问题,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直线$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数)与圆$\left\{\begin{array}{l}{x=4+2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ为参数)相切,则直线的倾斜角为(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{4}$或$\frac{5π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.-$\frac{π}{6}$或-$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙   92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;若将频率视为概率,对甲学生在培训后参加的一次数学竞赛成绩进行预测,求甲的成绩高于80分的概率;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两中)考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1.
(1)求f(-$\frac{π}{24}$)的值.
(2)若x∈(0,π)求函数单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知f(x)的定义域为[-2,1],求函数f(3x-1)的定义域;
(2)已知f(2x+5)的定义域为[-1,4],求函数f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x>0,x(x-1)>0”的否定是(  )
A.?x>0,x(x-1)≤0B.?x<0,0≤x≤1C.?x>0,x(x-1)≤0D.?x>0,0≤x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了得到函数y=sinx+cosx的图象,可以将函数y=$\sqrt{2}$sin(x-$\frac{π}{4}$)的图象(  )
A.向左平行移动$\frac{π}{4}$个单位B.向右平行移动$\frac{π}{4}$个单位
C.向左平行移动$\frac{π}{2}$个单位D.向右平行移动$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知4an+1-4an-9=0,则数列{an}是(  )
A.公差为9的等差数列B.公差为$\frac{9}{4}$的等差数列
C.公差为4 的等差数列D.不是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知不等式组$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面区域为D.若目标函数z=ax-y-2在区域D上的最大值为2,则实数a的值为(  )
A.-2B.4C.-2或4D.-4或4

查看答案和解析>>

同步练习册答案