精英家教网 > 高中数学 > 题目详情
15.为了得到函数y=sinx+cosx的图象,可以将函数y=$\sqrt{2}$sin(x-$\frac{π}{4}$)的图象(  )
A.向左平行移动$\frac{π}{4}$个单位B.向右平行移动$\frac{π}{4}$个单位
C.向左平行移动$\frac{π}{2}$个单位D.向右平行移动$\frac{π}{2}$个单位

分析 利用两角和差的三角公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵函数y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
故将函数y=$\sqrt{2}$sin(x-$\frac{π}{4}$)的图象向左平行移动$\frac{π}{2}$个单位,
可得函数y=sinx+cosx 的图象,
故选:C.

点评 本题主要考查两角和差的三角公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设命题p:“函数f(x)=(a+1)x在定义域内是增函数”,命题q:“?x0∈R,ax02+2x0+a<0”若使p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.log215-log23+log${\;}_{\frac{1}{2}}}$5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=-x2+2x+3,若函数g(x)=f(x)-mx.若在区间[-2,2]上是单调函数,求实数m的取值范围{m|m≤-2或m≥6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某树苗培育基地为了解其基地内榕树树苗的长势情况,随机抽取了100株树苗,分别测出它们的高度(单位:cm),并将所得数据分组,画出频率分布表如表:
组 距频 数频 率
[100,102)160.16
[102,104)180.18
[104,106)250.25
[106,108)ab
[108,110)60.06
[110,112)30.03
合计1001
(1)求如表中a、b的值;
(2)估计该基地榕树树苗平均高度;
(3)若将这100株榕树苗高度分布的频率视为概率,从培育基地的榕树苗中随机选出4株,其中在[104,106)内的有X株,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则P到x轴的距离$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC的内角A、B、C的对边分别为a、b、c.若cosB=$\frac{3}{4}$,且c=2a,则(  )
A.a、b、c成等差数列B.a、b、c成等比数列
C.△ABC是直角三角形D.△ABC是等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点(0,-$\sqrt{5}$)是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为$\frac{\sqrt{6}}{6}$,椭圆的左右焦点分别为F1和F2
(1)求椭圆方程;
(2)点M在椭圆上,求△MF1F2面积的最大值;
(3)试探究椭圆上是否存在一点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知焦点在x轴的椭圆的离心率与双曲线3x2-y2=3的离心率互为倒数,且过点(1,$\frac{3}{2}$).
(1)求椭圆方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,点P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范围.

查看答案和解析>>

同步练习册答案