4£®ÒÑÖªµã£¨0£¬-$\sqrt{5}$£©ÊÇÖÐÐÄÔÚÔ­µã£¬³¤ÖáÔÚxÖáÉϵÄÍÖÔ²µÄÒ»¸ö¶¥µã£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{6}$£¬ÍÖÔ²µÄ×óÓÒ½¹µã·Ö±ðΪF1ºÍF2£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©µãMÔÚÍÖÔ²ÉÏ£¬Çó¡÷MF1F2Ãæ»ýµÄ×î´óÖµ£»
£¨3£©ÊÔ̽¾¿ÍÖÔ²ÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâÉè³öÍÖÔ²±ê×¼·½³Ì£¬¸ù¾Ý¶¥µãµÄ×ø±êºÍÀëÐÄÂʵÃb=$\sqrt{5}$£¬¸ù¾Ýa2=b2+c2Çó³öaµÄÖµ£¬¼´Çó³öÍÖÔ²±ê×¼·½³Ì£»
£¨2£©¸ù¾Ý£¨1£©Çó³öµÄÍÖÔ²±ê×¼·½³Ì£¬Çó³öµãM×Ý×ø±êµÄ·¶Î§£¬¼´Çó³öÈý½ÇÐÎÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÏȼÙÉè´æÔÚµãPÂú×ãÌõ¼þ£¬¸ù¾ÝÏòÁ¿µÄÊýÁ¿»ýµÃ$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$£¬¸ù¾ÝÍÖÔ²µÄ½¹¾àºÍÍÖÔ²µÄ¶¨ÒåÁгöÁ½¸ö·½³Ì£¬Çó³öS${\;}_{¡÷P{F}_{1}{F}_{2}}$µÄÖµ£¬½áºÏ£¨2£©ÖÐÈý½ÇÐÎÃæ»ýµÄ×î´óÖµ£¬ÅжϳöÊÇ·ñ´æÔÚµãP£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÉèÍÖÔ²±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÓÉÒÑÖªµÃ£¬b=$\sqrt{5}$£®£¨2·Ö£©
Ôòe2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=1-$\frac{5}{{a}^{2}}$=$\frac{1}{6}$£¬
½âµÃa2=6£¨4·Ö£©
¡àËùÇóÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1£¨5·Ö£©
£¨2£©ÁîM£¨x1£¬y1£©£¬
ÔòS${\;}_{¡÷P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|F1F2|•|y1|=$\frac{1}{2}$•2•|y1|=|y1|£¨7·Ö£©
¡ßµãMÔÚÍÖÔ²ÉÏ£¬¡à-$\sqrt{5}$¡Üy1¡Ü$\sqrt{5}$£¬
¹Ê|y1|µÄ×î´óֵΪ$\sqrt{5}$£¬£¨8·Ö£©
¡àµ±y1=¡À$\sqrt{5}$ʱ£¬S${\;}_{¡÷P{F}_{1}{F}_{2}}$µÄ×î´óֵΪ$\sqrt{5}$£®£¨9·Ö£©
£¨3£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬
¡ß$\overrightarrow{P{F}_{1}}$¡Ù$\overrightarrow{0}$£¬$\overrightarrow{P{F}_{2}}$¡Ù$\overrightarrow{0}$£¬
¡à$\overrightarrow{P{F}_{1}}$¡Í$\overrightarrow{P{F}_{2}}$£¬£¨10·Ö£©
¡à¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬¡à|PF1|2+|PF2|2=|F1F2|2=4 ¢Ù£¨11·Ö£©
ÓÖ¡ß|PF1|+|PF2|=2a=2$\sqrt{6}$ ¢Ú£¨12·Ö£©
¡à¢Ú2-¢Ù£¬µÃ2|PF1|•|PF2|=20£¬¡à$\frac{1}{2}$|PF1|•|PF2|=5£¬£¨13·Ö£©
¼´S${\;}_{¡÷P{F}_{1}{F}_{2}}$=5£¬ÓÉ£¨1£©µÃS${\;}_{¡÷P{F}_{1}{F}_{2}}$×î´óֵΪ$\sqrt{5}$£¬¹Êì¶Ü£¬
¡à²»´æÔÚÒ»µãP£¬Ê¹$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£®£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇó·¨ÒÔ¼°ÍÖÔ²µÄÐÔÖÊ¡¢ÏòÁ¿ÊýÁ¿»ýµÄ¼¸ºÎÒâÒ壬ÀûÓÃa¡¢b¡¢c¡¢e¼¸ºÎÒâÒåºÍa2=b2+c2Çó³öaºÍbµÄÖµ£¬¸ù¾ÝÍÖÔ²ÉϵãµÄ×ø±ê·¶Î§Çó³öÏàÓ¦Èý½ÇÐεÄÃæ»ý×îÖµ£¬¼´¸ù¾Ý´Ë·¶Î§ÅжϵãPÊÇ·ñ´æÔÚ£¬´ËÌâ×ÛºÏÐÔÇ¿£¬Éæ¼°µÄ֪ʶ¶à£¬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼×¡¢ÒÒÁ½Î»Ñ§Éú²Î¼ÓÊýѧ¾ºÈüÅàѵ£®ÏÖ·Ö±ð´ÓËûÃÇÔÚÅàѵÆÚ¼ä²Î¼ÓµÄÈô¸É´ÎÔ¤Èü³É¼¨ÖÐËæ»ú³éÈ¡8´Î£¬¼Ç¼ÈçÏ£º
¼×¡¡82¡¡81¡¡79¡¡78¡¡95¡¡88¡¡93¡¡84
ÒÒ   92¡¡95¡¡80¡¡75¡¡83¡¡80¡¡90¡¡85
£¨1£©Óþ¥Ò¶Í¼±íʾÕâÁ½×éÊý¾Ý£»Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬¶Ô¼×ѧÉúÔÚÅàѵºó²Î¼ÓµÄÒ»´ÎÊýѧ¾ºÈü³É¼¨½øÐÐÔ¤²â£¬Çó¼×µÄ³É¼¨¸ßÓÚ80·ÖµÄ¸ÅÂÊ£»
£¨2£©ÏÖÒª´ÓÖÐÑ¡ÅÉÒ»È˲μÓÊýѧ¾ºÈü£¬´Óͳ¼ÆÑ§µÄ½Ç¶È£¨ÔÚÆ½¾ùÊý¡¢·½²î»ò±ê×¼²îÖÐÑ¡Á½ÖУ©¿¼ÂÇ£¬ÄãÈÏΪѡÅÉÄÄλѧÉú²Î¼ÓºÏÊÊ£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÎªÁ˵õ½º¯Êýy=sinx+cosxµÄͼÏ󣬿ÉÒÔ½«º¯Êýy=$\sqrt{2}$sin£¨x-$\frac{¦Ð}{4}$£©µÄͼÏ󣨡¡¡¡£©
A£®Ïò×óƽÐÐÒÆ¶¯$\frac{¦Ð}{4}$¸öµ¥Î»B£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{¦Ð}{4}$¸öµ¥Î»
C£®Ïò×óƽÐÐÒÆ¶¯$\frac{¦Ð}{2}$¸öµ¥Î»D£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{¦Ð}{2}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª4an+1-4an-9=0£¬ÔòÊýÁÐ{an}ÊÇ£¨¡¡¡¡£©
A£®¹«²îΪ9µÄµÈ²îÊýÁÐB£®¹«²îΪ$\frac{9}{4}$µÄµÈ²îÊýÁÐ
C£®¹«²îΪ4 µÄµÈ²îÊýÁÐD£®²»ÊǵȲîÊýÁÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÃüÌâÖУ¬ÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®´æÔÚx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬sinx+cosx¡Ý2B£®ÈÎÒâx¡Ê£¨3£¬+¡Þ£©£¬x2£¾3x-1
C£®´æÔÚx¡ÊR£¬x2+x=-1D£®ÈÎÒâx¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬tanx£¾sinx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ä³¼Ò¾ß³§µÄÔ­²ÄÁÏ·ÑÖ§³öxÓëÏúÊÛÁ¿y£¨µ¥Î»£ºÍòÔª£©Ö®¼äÓÐÈç±íÊý¾Ý£¬¸ù¾Ý±íÖÐÌṩµÄÈ«²¿Êý¾Ý£¬ÓÃ×îС¶þ³Ë·¨µÃ³öyÓëxµÄÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=8x+$\stackrel{¡Ä}{b}$£¬Ôò$\stackrel{¡Ä}{b}$Ϊ£¨¡¡¡¡£©
X24568
y2535605575
A£®5B£®15C£®10D£®20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Éè·Ç¿ÕÊý¼¯A={x|-3¡Üx¡Üa}£¬B={y|y=3x+10£¬x¡ÊA}£¬C={z|z=5-x£¬x¡ÊA}ÇÒB¡ÉC=C£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-$\frac{2}{3}$£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}x+y¡Ü1\\ x-y¡Ý-1\\ y¡Ý0\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòΪD£®ÈôÄ¿±êº¯Êýz=ax-y-2ÔÚÇøÓòDÉϵÄ×î´óֵΪ2£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®-2B£®4C£®-2»ò4D£®-4»ò4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÇúÏßC£º$\frac{x^2}{4}$+$\frac{y^2}{3}$=1£¬Ö±Ïßl£º$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£®
£¨1£©Ð´³öÇúÏßCµÄ²ÎÊý·½³Ì£¬Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÉèM£¨1£¬2£©£¬Ö±ÏßlÓëÇúÏßC½»µãΪA¡¢B£¬ÊÔÇó|MA|•|MB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸