精英家教网 > 高中数学 > 题目详情
12.已知4an+1-4an-9=0,则数列{an}是(  )
A.公差为9的等差数列B.公差为$\frac{9}{4}$的等差数列
C.公差为4 的等差数列D.不是等差数列

分析 通过数列的关系式,判断数列是等差数列.

解答 解:因为4an+1-4an-9=0,
所以an+1-an=$\frac{9}{4}$
所以{an}是公差为$\frac{9}{4}$的等差数列.
故选B.

点评 考查等差数列的性质和定义的运用,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设Sn为等差数列{an}的前n项和,S10=110,S15=240.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{{a_{n+1}}}}{a_n}$+$\frac{a_n}{{{a_{n+1}}}}$-2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=-x2+2x+3,若函数g(x)=f(x)-mx.若在区间[-2,2]上是单调函数,求实数m的取值范围{m|m≤-2或m≥6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则P到x轴的距离$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC的内角A、B、C的对边分别为a、b、c.若cosB=$\frac{3}{4}$,且c=2a,则(  )
A.a、b、c成等差数列B.a、b、c成等比数列
C.△ABC是直角三角形D.△ABC是等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是y=f(x)的导函数的图象,现有四种说法:
(1)f(x)在(-3,1)上是增函数;
(2)x=-1是f(x)的极小值点;
(3)f(x)在(2,4)上是减函数,在(1,2)上是增函数;
(4)x=2是f(x)的极小值点;以上正确的序号为(2)(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点(0,-$\sqrt{5}$)是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为$\frac{\sqrt{6}}{6}$,椭圆的左右焦点分别为F1和F2
(1)求椭圆方程;
(2)点M在椭圆上,求△MF1F2面积的最大值;
(3)试探究椭圆上是否存在一点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按规律,第600个数对为(5,31).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知若函数f(x)=x2+2(a-1)x+2
(1)当a=2时,试证明f(x)在(0,+∞)上是增函数;
(2)若f(f(2))=14,试求a的值;
(3)若函数f(x)在区间(-∞,4)上是减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案