10£®Ä³Ê÷ÃçÅàÓý»ùµØÎªÁ˽âÆä»ùµØÄÚéÅÊ÷Ê÷ÃçµÄ³¤ÊÆÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100ÖêÊ÷Ã磬·Ö±ð²â³öËüÃǵĸ߶ȣ¨µ¥Î»£ºcm£©£¬²¢½«ËùµÃÊý¾Ý·Ö×飬»­³öƵÂÊ·Ö²¼±íÈç±í£º
×é ¾àÆµ ÊýƵ ÂÊ
[100£¬102£©160.16
[102£¬104£©180.18
[104£¬106£©250.25
[106£¬108£©ab
[108£¬110£©60.06
[110£¬112£©30.03
ºÏ¼Æ1001
£¨1£©ÇóÈç±íÖÐa¡¢bµÄÖµ£»
£¨2£©¹À¼Æ¸Ã»ùµØéÅÊ÷Ê÷ÃçÆ½¾ù¸ß¶È£»
£¨3£©Èô½«Õâ100ÖêéÅÊ÷Ãç¸ß¶È·Ö²¼µÄƵÂÊÊÓΪ¸ÅÂÊ£¬´ÓÅàÓý»ùµØµÄéÅÊ÷ÃçÖÐËæ»úÑ¡³ö4Ö꣬ÆäÖÐÔÚ[104£¬106£©ÄÚµÄÓÐXÖ꣬ÇóXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼±í£¬ÄÜÇó³öaºÍb£»
£¨2£©È¡×é¾àµÄÖмäÖµ£¬ÄܹÀ¼Æ¸Ã»ùµØéÅÊ÷Ê÷ÃçÆ½¾ù¸ß¶È£»
£¨3£©ÓÉÆµÂÊ·Ö²¼±íÖªÊ÷Ãç¸ß¶ÈÔÚ[104£¬106£©·¶Î§ÄÚµÄÓÐ25Ö꣬Òò´ËXµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼±í£¬Öª£ºa=100-16-18-25-6-3=32£¬$b=\frac{32}{100}=0.32$£»
£¨2£©¹À¼Æ¸Ã»ùµØéÅÊ÷Ê÷ÃçÆ½¾ù¸ß¶ÈΪ
$\frac{101¡Á16+103¡Á18+105¡Á25+107¡Á32+109¡Á6+111¡Á3}{100}=105.06$£¨cm£©£»
£¨3£©ÓÉÆµÂÊ·Ö²¼±íÖªÊ÷Ãç¸ß¶ÈÔÚ[104£¬106£©·¶Î§ÄÚµÄÓÐ25Ö꣬
Òò´ËXµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4¡­
$P£¨x=0£©=C_4^0{£¨\frac{3}{4}£©^4}=\frac{81}{256}$£¬
$P£¨x=1£©=C_4^1\frac{1}{4}{£¨\frac{3}{4}£©^3}=\frac{27}{64}$£¬
$P£¨x=2£©=C_4^2{£¨\frac{1}{4}£©^2}{£¨\frac{3}{4}£©^2}=\frac{27}{128}$£¬
$P£¨x=3£©=C_4^3{£¨\frac{1}{4}£©^3}{£¨\frac{3}{4}£©^{\;}}=\frac{3}{64}$
$P£¨x=4£©=C_4^4{£¨\frac{1}{4}£©^4}=\frac{1}{256}$£®
·Ö²¼ÁÐΪ

X01234
P$\frac{81}{256}$$\frac{27}{64}$$\frac{27}{128}$$\frac{3}{64}$$\frac{1}{256}$
E£¨X£©=np=4¡Á0.24=1£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼±íµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=sin£¨$\frac{5¦Ð}{6}$-2x£©-2sin£¨x-$\frac{¦Ð}{4}$£©cos£¨x+$\frac{3¦Ð}{4}$£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôx¡Ê[$\frac{¦Ð}{12}$£¬$\frac{¦Ð}{3}$]£¬ÇÒF£¨x£©=-4¦Ëf£¨x£©-cos£¨4x-$\frac{¦Ð}{3}$£©µÄ×îСֵÊÇ-$\frac{3}{2}$£¬ÇóʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýy=log2£¨x-x2£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨-1£¬0£©C£®£¨1£¬+¡Þ£©D£®£¨-¡Þ£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©ÒÑÖªf£¨x£©µÄ¶¨ÒåÓòΪ[-2£¬1]£¬Çóº¯Êýf£¨3x-1£©µÄ¶¨ÒåÓò£»
£¨2£©ÒÑÖªf£¨2x+5£©µÄ¶¨ÒåÓòΪ[-1£¬4]£¬Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®»¯¼ò£º
£¨1£©£¨$\frac{2}{3}$£©-2+£¨1-$\sqrt{2}$£©0-£¨3$\frac{3}{8}$£©${\;}^{\frac{2}{3}}$+$\sqrt{£¨3-¦Ð£©^{2}}$£»
£¨2£©$\frac{5}{6}$a${\;}^{\frac{1}{3}}$b-2•£¨-3a${\;}^{-\frac{1}{2}}$b-1£©¡Â£¨4a${\;}^{\frac{2}{3}}$b-3£©${\;}^{\frac{1}{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÎªÁ˵õ½º¯Êýy=sinx+cosxµÄͼÏ󣬿ÉÒÔ½«º¯Êýy=$\sqrt{2}$sin£¨x-$\frac{¦Ð}{4}$£©µÄͼÏ󣨡¡¡¡£©
A£®Ïò×óƽÐÐÒÆ¶¯$\frac{¦Ð}{4}$¸öµ¥Î»B£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{¦Ð}{4}$¸öµ¥Î»
C£®Ïò×óƽÐÐÒÆ¶¯$\frac{¦Ð}{2}$¸öµ¥Î»D£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{¦Ð}{2}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬ÒÑÖªÔ²ÄÚ½ÓËıßÐÎABCD£¬¼ÇT=tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$£®
£¨1£©ÇóÖ¤£ºT=$\frac{2}{sinA}$+$\frac{2}{sinB}$£»
£¨2£©ÈôAB=6£¬BC=3£¬CD=4£¬AD=5£¬ÇóTµÄÖµ¼°ËıßÐÎABCDµÄÃæ»ýS£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÃüÌâÖУ¬ÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®´æÔÚx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬sinx+cosx¡Ý2B£®ÈÎÒâx¡Ê£¨3£¬+¡Þ£©£¬x2£¾3x-1
C£®´æÔÚx¡ÊR£¬x2+x=-1D£®ÈÎÒâx¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬tanx£¾sinx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¸´Êýz=$\frac{1+2i}{1+i}$£¨iΪÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©B£®£¨$\frac{1}{2}$£¬$\frac{3}{2}$£©C£®£¨$\frac{3}{2}$£¬-$\frac{1}{2}$£©D£®£¨-$\frac{3}{2}$£¬$\frac{1}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸