精英家教网 > 高中数学 > 题目详情
已知一元二次不等式f(x)≤0的解集为{x|x≤
1
2
,或x≥3}
,则f(ex)>0的解集为(  )
A、{x|x<-ln2,或x>ln3}
B、{x|ln2<x<ln3}
C、{x|x<ln3}}
D、{x|-ln2<x<ln3}
考点:二次函数的性质
专题:函数的性质及应用
分析:由已知利用补集思想求出一元二次不等式f(x)>0的解集{x|
1
2
<x<3},然后由
1
2
<ex<3,求解x的取值集合即可得到答案.
解答: 解:∵一元二次不等式f(x)≤0的解集为{x|x≤
1
2
,或x≥3}

∴一元二次不等式f(x)>0的解集为{x|
1
2
<x<3}.
1
2
<ex<3,得:-ln2<x<ln3.
∴f(ex)>0的解集为{x|-ln2<x<ln3}.
故选:D.
点评:本题考查了一元二次不等式的解法,训练了补集思想的应用,关键是明确求解f(ex)>0要保证
1
2
<ex<3,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(
2
2
),
a
b
=
8
5
,且
π
4
<x<
π
2
,则cos(x+
π
4
)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,则点D到平面ACD1的距离是(  )
A、
1
2
B、
3
2
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n
②若α∥β,β∥γ,m⊥α,则m⊥γ
③若m∥α,m∥β,α∩β=n,则m∥n
④若α⊥γ,β⊥γ,α∩β=m,则m⊥γ.正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)f(x)=-2(f(x)≠0),且在区间(2013,2014)上单调递增,已知α,β是锐角三角形的两个内角,则f(sinα)、f(cosβ)的大小关系是(  )
A、f(sinα)<f(cosβ)
B、f(sinα)>f(cosβ)
C、f(sinα)=f(cosβ)
D、以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面α,β,γ和直线a,b,m,n,下列命题中真命题是(  )
A、若a⊥m,a⊥n,m?α,n?α,则a⊥α
B、若α∥β,α∩γ=a,β∩γ=b则a∥b
C、若a∥b,b?α,则a∥α
D、若a?β,b?β,a∥α,b∥α,则β∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

如图示,在底面为直角梯形的四棱椎P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足
Sn
an-2
=
a
a-2
 (a是常数且a>O,a≠2),bn=
2Sn
an
+1.
(1)求数列{an}的通项公式;
(2)若数列{bn}为等比数列,求{bn}的通项公式;
(3)在(2)的条件下,记cn=log3b1+log3b2+…+log3bn,?n∈N*是否存在正整数m,使
1
c1
+
1
c2
+…+
1
cn
m
3
都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=(
1
3
n,把数列{an}的各项排列成如下的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=
 

查看答案和解析>>

同步练习册答案