精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosx,sinx),
b
=(
2
2
),
a
b
=
8
5
,且
π
4
<x<
π
2
,则cos(x+
π
4
)
的值为
 
考点:平面向量数量积的坐标表示、模、夹角,三角函数中的恒等变换应用
专题:平面向量及应用
分析:利用数量积运算可得sin(x+
π
4
)=
4
5
,再利用三角函数平方关系即可得出.
解答: 解:∵
a
b
=
2
cosx+
2
sinx
=2sin(x+
π
4
)
=
8
5

sin(x+
π
4
)=
4
5

π
4
<x<
π
2

π
2
<x+
π
4
4

cos(x+
π
4
)=-
1-sin2(x+
π
4
)
=-
3
5

故答案为:-
3
5
点评:本题考查了数量积运算和三角函数平方关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
健康指数 2 1 0 -1
60岁至79岁的人数 120 133 34 13
80岁及以上的人数 9 18 14 9
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”.
(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点M(
6
,1),离心率为
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点P(
6
,0),若A,B为已知椭圆上两动点,且满足
PA
PB
=-2,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)若函数f(x)=
x
1+x2
,又记:f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,3,…,则f2014(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△OAB中,∠AOB=120°,OA=OB=2
3
,边AB的四等分点分别为A1,A2,A3,A1靠近A,执行如图算法后结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

[
n
]表示不超过
n
的最大整数.
S1=[
1
]
+[
2
]
+[
3
]
=3,
S2=[
4
]
+[
5
]
+[
6
]
+[
7
]
+[
8
]
=10,
S3=[
9
]
+[
10
]
+[
11
]
+[
12
]
+[
13
]
+[
14
]
+[
15
]
=21,…,
那么Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某算法的伪代码如图所示,若输出y的值为1,则输入x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+x-a,x∈[-1,1]的最大值为M(a),则当a∈[-1,1]时M(a)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次不等式f(x)≤0的解集为{x|x≤
1
2
,或x≥3}
,则f(ex)>0的解集为(  )
A、{x|x<-ln2,或x>ln3}
B、{x|ln2<x<ln3}
C、{x|x<ln3}}
D、{x|-ln2<x<ln3}

查看答案和解析>>

同步练习册答案