精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;

(Ⅱ)当AC=1,EC=2时,求AD的长.

 

【答案】

(Ⅰ)详见解析;(Ⅱ).

【解析】

试题分析:(Ⅰ)要证明,注意到的平分线,等角对等弦,可连接,则,可证,又因为,可证即可, 由圆内接四边形的性质可证;(Ⅱ)根据割线定理,建立的方程,解出即可.

试题解析:(Ⅰ)连接,因为是圆的内接四边形,所以,又,所以,即有,又,所以,又的平分线,

所以,从而.

(Ⅱ)由条件的,根据割线定理得,即,所以

解得,或(舍去),即

考点:本小题考查割线定理,相似三角形,等角对等弦,圆内接四边形,考查分析问题、解决问题的能力,及推理论证能力.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案