精英家教网 > 高中数学 > 题目详情
11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,点P(0,$\sqrt{3}$)在椭圆上,A,B分别为椭圆的左右顶点,过点B作BD⊥x轴交AP的延长线于点D,F为椭圆的右焦点.
(1)求椭圆的方程及直线PF被椭圆截得的弦长|PM|;
(2)求证:以BD为直径的圆与直径PF相切.

分析 (1)由椭圆过点P(0,$\sqrt{3}$),求得b=$\sqrt{3}$,由离心率公式及a2=b2+c2,即可求得a的值,即可求得椭圆的方程,求得直线PF的直线方程,代入椭圆方程,求得x1,x2,根据弦长公式即可求得|PM|;
(2)求得直线AP的方程,与BD的直线方程x=2联立求D点坐标,即可求得圆心及半径R,利用点到直线的距离公式,求得d=R,以BD为直径的圆与直线PF相切.

解答 解:(1)∵椭圆过点P(0,$\sqrt{3}$),
∴b=$\sqrt{3}$,又e=$\frac{1}{2}$即$\frac{c}{a}$=$\frac{1}{2}$即$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2
故$\left\{\begin{array}{l}{a=2}\\{c=1}\end{array}\right.$,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
则F(1,0),P(0,$\sqrt{3}$),直线PF的方程为y=-$\sqrt{3}$(x-1),与椭圆方程联立有$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=-\sqrt{3}(x-1)}\end{array}\right.$
消去y得到5x2-8x=0,解得$\left\{\begin{array}{l}{{x}_{1}=0}\\{{x}_{2}=\frac{8}{5}}\end{array}\right.$    由弦长公式得|PM|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{16}{5}$;
(2)证明:过A(-2,0),P(0,$\sqrt{3}$)的直线AP的方程为y=$\frac{\sqrt{3}}{2}$(x+2)
与BD的直线方程x=2联立有D(2,2$\sqrt{3}$),
所以以BD为直径的圆的圆心为(2,$\sqrt{3}$),半径R=$\sqrt{3}$,
圆心到直线PF的距离d=$\frac{|2\sqrt{3}+\sqrt{3}-\sqrt{3}|}{\sqrt{(\sqrt{3}})^{2}+1}$=$\sqrt{3}$=R
所以以BD为直径的圆与直线PF相切.

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式和椭圆的性质,考查直线方程和椭圆方程联立,同时考查直线和圆的位置关系,点到直线的距离公式和相切的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点A(2,1),离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=60°,AP=AC=AD=2,E为CD的中点,M在AB上,且$\overrightarrow{AM}$=2$\overrightarrow{MB}$.
(I)求证:EM∥平面PAD;
(Ⅱ)求平面PAD与平面PBC所成锐二面角的余弦值;
(Ⅲ) 点F是线段PD上异于两端点的任意一点,若满足异面直线EF与AC所成角45°,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.a、b、c依次表示函数f(x)=2x+x-2,g(x)=3x+x-2,h(x)=lnx+x-2的零点,则a、b、c的大小顺序为(  )
A.c<b<aB.a<b<cC.a<c<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,菱形ABCD的棱长为2,∠BAD=60°,CP⊥底面ABCD,E为边AD的中点.
(1)求证:平面PBE⊥平面BCP;
(2)当直线AP与底面ABCD所成的角为30°时,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=xlnx-ax,g(x)=x3+ax+a.
(1)问:f(x)=0在(0,+∞)上有几个实根?
(2)若F(x)=f(x)-g(x)在(0,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如表提供了甲产品的产量x(吨)与利润y(万元)的几组对照数据.
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)计算相关指数R2的值,并判断线性模型拟合的效果.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某奶茶店为了解白天平均气温与某种饮料销量之间的关系进行分析研究,记录了2月21日至2月25日
的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如表数据:
平均气温x(℃)91112108
销量y(杯)2326302521
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ) 试根据(1)求出的线性回归方程,预测平均气温约为20℃时该奶茶店的这种饮料销量.
(参考:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=|log3(x+1)|,实数m,n满足-1<m<n,且f(m)=f(n).若f(x)在区间[m2,n]上的最大值为2,则$\frac{m}{n}$=(  )
A.-9B.-8C.-$\frac{1}{9}$D.-$\frac{1}{8}$

查看答案和解析>>

同步练习册答案