| A. | -9 | B. | -8 | C. | -$\frac{1}{9}$ | D. | -$\frac{1}{8}$ |
分析 先结合函数f(x)=|log3(x+1)|的图象和性质,再由f(m)=f(n),得到(m+1),(n+1)的倒数关系,再由“若f(x)在区间[m2,n]上的最大值为2”,求得m,n的值得到结果.
解答 解:∵f(x)=|log3(x+1)|,且f(m)=f(n),
∴(m+1)(n+1)=1
∵若f(x)在区间[m2,n]上的最大值为2
∴log3(n+1)=2
∴n=8.
∴m=$-\frac{8}{9}$,
∴$\frac{m}{n}$=-$\frac{1}{9}$
故选:C.
点评 本题主要考查最值及其几何意义,对数函数的图象和性质,特别是取绝对值后考查的特别多,解决的方法多数用数形结合法
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 记忆能力x | 4 | 6 | 8 | 10 |
| 识图能力y | 3 | 5 | 6 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5.2 | B. | 6.6 | C. | 7.1 | D. | 8.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com