精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|log3(x+1)|,实数m,n满足-1<m<n,且f(m)=f(n).若f(x)在区间[m2,n]上的最大值为2,则$\frac{m}{n}$=(  )
A.-9B.-8C.-$\frac{1}{9}$D.-$\frac{1}{8}$

分析 先结合函数f(x)=|log3(x+1)|的图象和性质,再由f(m)=f(n),得到(m+1),(n+1)的倒数关系,再由“若f(x)在区间[m2,n]上的最大值为2”,求得m,n的值得到结果.

解答 解:∵f(x)=|log3(x+1)|,且f(m)=f(n),
∴(m+1)(n+1)=1
∵若f(x)在区间[m2,n]上的最大值为2
∴log3(n+1)=2
∴n=8.
∴m=$-\frac{8}{9}$,
∴$\frac{m}{n}$=-$\frac{1}{9}$
故选:C.

点评 本题主要考查最值及其几何意义,对数函数的图象和性质,特别是取绝对值后考查的特别多,解决的方法多数用数形结合法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,点P(0,$\sqrt{3}$)在椭圆上,A,B分别为椭圆的左右顶点,过点B作BD⊥x轴交AP的延长线于点D,F为椭圆的右焦点.
(1)求椭圆的方程及直线PF被椭圆截得的弦长|PM|;
(2)求证:以BD为直径的圆与直径PF相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某小学对学生的记忆能力x与识图能力y进行统计分析,得到如表数据:
记忆能力x46810
识图能力y3568
(1)试求y与x之间的回归直线方程;
(2)当小明同学的记忆能力为14时,用回归直线方程预测他的识图能力的值.
参考公式:回归直线的方程是$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}中,Sn为前n项和,S4=6,S6=8,则S10=(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=cos2x在点($\frac{π}{4},\frac{1}{2}}$)处的切线方程为x+y-$\frac{1}{2}$-$\frac{π}{4}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩留量为最初质量的一半所需的时间叫做半衰期)是(  )年(精确到0.1,已知lg2=0.3010,lg3=0.4771).
A.5.2B.6.6C.7.1D.8.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.分别求满足下列条件的直线方程.
(Ⅰ)过点(0,1),且平行于l1:4x+2y-1=0的直线;
(Ⅱ)与l2:x+y+1=0垂直,且过点P(-1,0)的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点(tan3,cos3)落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案