精英家教网 > 高中数学 > 题目详情
18.直线y=x被圆x2+(y+2)2=4截得的弦长是(  )
A.2B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 确定圆的圆心坐标与半径,求得圆心到直线y=x的距离,利用垂径定理构造直角三角形,即可求得弦长.

解答 解:圆x2+(y+2)2=4的圆心坐标为(0,-2),半径为2
∵圆心到直线y=x的距离为$\frac{2}{\sqrt{2}}$=$\sqrt{2}$
∴直线y=x被圆x2+(y+2)2=4截得的弦长为2$\sqrt{4-2}$=2$\sqrt{2}$
故选:B.

点评 本题考查直线与圆相交,考查圆的弦长,解题的关键是求得圆心到直线y=x的距离,利用垂径定理构造直角三角形求得弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知四边形ABCD的对角线AC与BD相交于点O,且$\overrightarrow{AO}$=$\overrightarrow{OC},\overrightarrow{DO}=\overrightarrow{OB}$,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.tan(-$\frac{4π}{3}$)+tan$\frac{4π}{3}$等于(  )
A.-2$\sqrt{3}$B.-$\frac{2\sqrt{3}}{3}$C.0D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列两个函数相同的是(  )
A.f(x)=lnx2,g(x)=2lnxB.f(x)=x,g(x)=($\sqrt{x}$)2
C.f(x)=cosx•tanx,g(x)=sinxD.f(x)=x2,g(x)=$\sqrt{{x}^{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O为坐标原点,$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-2,-1),则$\frac{|\overrightarrow{AB}|}{\overrightarrow{OA}•\overrightarrow{OB}}$=(  )
A.-$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{2}$C.-$\frac{3\sqrt{2}}{4}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若(1-2015x)2015=a0+a1x+…+a2015x2015(x∈R),则$\frac{a_1}{2015}$+$\frac{a_2}{2015^2}$+…+$\frac{a_{2015}}{2015^{2015}}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤2}\\{x-y≤2}\end{array}\right.$,若不等式y≥ax-3恒成立,则实数a的取值范围为(  )
A.(-∞,$\frac{3}{2}$]B.(-∞,4]C.[$\frac{3}{2}$,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若执行如图所示的程序,输出的结果为48,则判断框中应填入的条件为(  )
A.i≥6?B.i>6?C.i≥4?D.i>4?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与向量$\overrightarrow{a}$=(1,3,-2)平行的一个向量的坐标是(  )
A.($\frac{1}{3}$,1,1)B.(-$\frac{1}{2}$,-$\frac{3}{2}$,1)C.(-$\frac{1}{2}$,$\frac{3}{2}$,-1)D.($\sqrt{2}$,-3,-2$\sqrt{2}$)

查看答案和解析>>

同步练习册答案