分析 根据向量相等得到模相等,根据模相等得到对角线互相平分,即可证明四边形ABCD是平行四边形.
解答 证明:∵$\overrightarrow{AO}$=$\overrightarrow{OC},\overrightarrow{DO}=\overrightarrow{OB}$,
∴|$\overrightarrow{AO}$|=|$\overrightarrow{OC}$|,|$\overrightarrow{DO}$|=|$\overrightarrow{OB}$|,
∵对角线AC与BD相交于点O,
∴对角线互相平分,
∴四边形ABCD是平行四边形.
点评 本题考查向量相等的应用,以及平行四边形的判断定理,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x2 | B. | y=(x-1)2 | C. | y=$\frac{1}{x}$ | D. | y=$\frac{1}{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com