精英家教网 > 高中数学 > 题目详情

(13分)已知的反函数为
(1)若函数在区间上单增,求实数的取值范围;
(2)若关于的方程内有两个不相等的实数根,求实数的取值范围.

解:
(1),因为
故题意上单增且恒正,故必有
于是,解得
(2)方程
,因为,故当
题意等价于方程有两个不相等的正数根,故

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数且存在使
(I)证明:是R上的单调增函数;
(II)设其中 
证明:
(III)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知函数的图象与函数的图象关于点A
(0,1)对称.(1)求函数的解析式(2)若=+,且在区间(0,
上的值不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)求函数的定义域;
(2)求函数的零点;
(3)若函数的最小值为-4,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(I)求函数上的最小值;
(II)对一切恒成立,求实数的取值范围;
(III)求证:对一切,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的定义域.
(2)判断函数的奇偶性.
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)函数f(x)=(a〉0,且a≠1)在区间[1,2]上的最大值比最小值大,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的二次方程
(1)若方程有两根,其中一根在区间内,另一根在区间内,求m的取值范围
(2)若方程两根均在区间内,求m的取值范围       

查看答案和解析>>

同步练习册答案