【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线和曲线的普通方程;
(2)已知点为曲线上的动点,求到直线的距离的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的奇函数,且当时, .
(1)求函数的解析式;
(2)现已画出函数在轴左侧的图象,如图所示,请补全完整函数的图象;
(3)根据(2)中画出的函数图像,直接写出函数的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=,AB=a,BC=a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.
(1)若θ=时,绿地“最美”,求最美绿地的面积;
(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,已知,点、分别在、上,且,将四边形沿折起,使点在平面上的射影在直线上.
(I)求证: ;
(II)求点到平面的距离;
(III)求直线与平面所成的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通项公式;
(2) 求证:++…+<1对任意正整数m都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线过点.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com