精英家教网 > 高中数学 > 题目详情
若x∈R,则“x<
π
2
”是“sinx>0”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.
解答: 解:当x=0时,满足x<
π
2
,但sinx=0,则sinx>0不成立,即充分性不成立.
当x=
4
时,满足sinx>0,但x<
π
2
不成立,即必要性不成立,
故“x<
π
2
”是“sinx>0”,既不充分也不必要条件,
故选:D.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
=(1,2),
b
=(1,1),则
a
+
b
=(  )
A、(2,3)
B、(3,2)
C、(0,1)
D、(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)在区间(-∞,0]上单调递增,则满足f(2x-1)>f(
1
3
)的x的取值范围是(  )
A、(
1
3
2
3
B、[
1
3
2
3
C、(
1
2
2
3
D、[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,复数z满足i3•z=2,则z的值为(  )
A、-1B、2iC、1D、-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
1
2014
x-log2014x,实数a、b、c满足f(a)f(b)f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,则下列不等式中,不可能成立的是(  )
A、x0<a
B、x0>b
C、x0<c
D、x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:

某农科所对冬季昼夜温差与某反季节大豆新品种发芽之间的关系如表:
日期 1日 2日 3日 4日 5日
温差x(℃) 10 11 13 12 8
发芽y(颗) 23 25 30 26 16
该研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验
(1)若选取12月1日和5日这两日的数据进行检验,请根据12月2日至4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为是可靠的,试问(1)的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数?

查看答案和解析>>

科目:高中数学 来源: 题型:

P(x0,y0)是双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)上一点,M,N分别是双曲线E关于原点对称的两点且两者的横坐标不与|x0|相等.
(1)求证:直线PM,PN的斜率之积为为定值,并写出这个定值; 
(2)若直线PM,PN的斜率之积为
1
5
,求双曲线的离心率;
(3)在问题(2)的假定下,过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足
OC
OA
+
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式4≤2x≤16的解集为A,集合B={x|a≤x≤a+4,a∈R}.
(1)若a=-1,求A∩∁RB.
(2)若“x∈A”是“x∈B”的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列各题中的条件,求相应的等差数列{an}未知数:
(1)a1=
5
6
,d=-
1
6
,Sn=-5,求n及an; 
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

同步练习册答案