精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的单调递增区间;

(2)证明:当时,有两个零点;

(3)若,函数处取得最小值,证明:.

【答案】(1)(2)见证明;(3)见证明;

【解析】

(1)对函数f(x)求导,解即可得到函数的单调增区间;(2)根据函数单调性和函数的极值以及图像的趋势即可得到证明;(3)对函数g(x)求导,求出单调性,由单调性得到函数取最小值时的x值即,代入f(x)即可得到证明.

(1)解:.

时,由,得.

的单调递增区间为.

(2)证明:函数f(x)定义域为时,

时,上单调递增,在上单调递减.

.

且当),

所以有两个零点.

(3)证明:.

,因为,所以上为增函数.

.

所以.当时,;当时,.

所以函数处取得最小值且

.

因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正整数的所有约数之和用表示,(比如).试答下列各问:

(1)证明:如果互质,那么

(2)当的约数(),且.试证是质数.其次,如果是正整数,是质数,试证也是质数;

(3)设为正整数,为奇数),且.试证存在质数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}(n=1,2,3)满足an+1=2﹣|an|,若a1>0,则a1_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|3x﹣2|﹣|x﹣3|.

Ⅰ)求不等式fx)≥4的解集;

Ⅱ)求函数gx)=fx)+f(﹣x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】辽宁号航母纪念章从2012105日起开始上市,通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x

8

10

32

市场价y

82

60

82

1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③.

2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是菱形,EMN分别是的中点.

1)证明:平面

2)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为常数且.新定义:若满足则称的回旋点.

1)当时,分别求的值;

2)当时,求函数的解析式,并求出回旋点;

3)证明函数有且仅有两个回旋点,并求出回旋点.

查看答案和解析>>

同步练习册答案