已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x与圆(x-2)2+y2=4的两个交点关于直线x+y+d=0对称,则Sn=________.
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题1第4课时练习卷(解析版) 题型:填空题
已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题1第1课时练习卷(解析版) 题型:选择题
已知命题p:“在△ABC中,若·=·,则||=||”,则在命题p的逆命题、否命题、逆否命题中,真命题的个数是( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题四练习卷(解析版) 题型:选择题
设等差数列{an}的前n项和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),则必定有( )
A.Sm>0且Sm+1<0 B.Sm<0且Sm+1>0 C.Sm>0且Sm+1>0 D.Sm<0且Sm+1<0
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题六练习卷(解析版) 题型:解答题
平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若点A,B,C是Γ上的不同三点,且满足++=0,证明:△ABC不可能为直角三角形.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题六练习卷(解析版) 题型:选择题
已知M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是( )
A.相切 B.相交 C.相离 D.相切或相交
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题八练习卷(解析版) 题型:解答题
在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=1,c=,cos C=
(1)求sin A的值;
(2)求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题五练习卷(解析版) 题型:填空题
如图所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题七练习卷(解析版) 题型:解答题
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5(微克/立方米) | 频数(天) | 频率 |
第一组 | (0,15] | 4 | 0.1 |
第二组 | (15,30] | 12 | 0.3 |
第三组 | (30,45] | 8 | 0.2 |
第四组 | (45,60] | 8 | 0.2 |
第五组 | (60,75] | 4 | 0.1 |
第六组 | (75,90) | 4 | 0.1 |
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com