精英家教网 > 高中数学 > 题目详情
20.某同学在求解某回归方程中,已知x,y的取值结果(y与x呈线性相关)如表:
x234
y64m
并且求得了线性回归方程为$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$,则m等于3.

分析 先求得$\overline{x}$,将$\overline{x}$代入回归方程求得$\overline{y}$,即可求得m的值.

解答 解:由$\overline{x}$=$\frac{2+3+4}{3}$=3,
线性回归方程为$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$必经过样本中心点($\overline{x}$,$\overline{y}$),
将$\overline{x}$代入,求得$\overline{y}$=5,
由$\overline{y}$=$\frac{6+4+m}{3}$,
求得m=5,
故答案为:5.

点评 本题考查线性回归方程的应用,计算过程简单,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,并且$\overrightarrow{a}$=(3,x),$\overrightarrow{b}$=(7,12),则x=(  )
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x3+ax2+bx+c,给出四个结论:
①函数f(x)一定有两个极值点.
②若x=x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减.
③f(x)的图象是中心对称图形.
④若f′(x0)=0,则x=x0是f(x)的极值点.
则结论正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在区间[-$\frac{π}{4}$,$\frac{2π}{3}$]上任取一个数x,则函数f(x)=3sin(2x-$\frac{π}{6}$)的值不小于0的概率为$\frac{6}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是递增的等比数列,a2,a4方程x2-40x+256=0的根.
(1)求{an}的通项公式;
(2)设bn=$\frac{n+2}{{a}_{n}}$,求数列{bn}的前n项和Sn,并证明:$\frac{3}{4}$≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数学归纳法证明命题“当n为正奇数时,xn+yn能被x+y整除”,第二步假设n=2k-1(k∈N+)命题为真时,进而需证n=2k+1时,命题亦真.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,∠A=60°,AB=2,且△ABC的面积S=$\frac{\sqrt{3}}{2}$,则AC的长为(  )
A.2B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-2x在区间[$\begin{array}{l}{0,+∞}\end{array}$)上单调递增,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.(?p)∧(?q)D.(?p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用0到9这10个数字,可以组成没有重复数字的三位数的个数是(  )
A.720B.648C.103D.310

查看答案和解析>>

同步练习册答案