精英家教网 > 高中数学 > 题目详情
5.用数学归纳法证明命题“当n为正奇数时,xn+yn能被x+y整除”,第二步假设n=2k-1(k∈N+)命题为真时,进而需证n=2k+1时,命题亦真.

分析 首先分析题目求在用数学归纳法验证当n为正奇数时,xn+yn被x+y整除.当第二步假设n=2k-1时命题为真,进而需验证那一项成立?理论上是验证下一项成立,而题目中n为正奇数,故下一项为2k+1.即可得到答案.

解答 解:当n为正奇数时,求证xn+yn被x+y整除
用数学归纳法证明时候,第二步假设n=2k-1时命题为真,进而需要验证n=2k+1.
故答案为:2k+1.

点评 此题主要考查数学归纳法的步骤问题,属于概念性问题,考查学生对数学归纳法的理解,而不是死记定义,这是在证明中易错的地方,同学们需要注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义一种运算a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,令f(x)=(3x2+6x)?(2x+3-x2),则函数f(x)的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{-8x(x-2),1≤x<2}\\{\frac{1}{2}f(\frac{x}{2}),x≥2}\end{array}\right.$给出下列结论:
①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23-n
③存在k∈($\frac{1}{8}$,$\frac{1}{4}$),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)⊆(2n,2n+1)”
其中正确命题的序号是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(3,-6),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.4C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某同学在求解某回归方程中,已知x,y的取值结果(y与x呈线性相关)如表:
x234
y64m
并且求得了线性回归方程为$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$,则m等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow{a}$=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t).(1)若 $\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量 $\overrightarrow{OB}$;
(2)若向量 $\overrightarrow{AC}$与向量 $\overrightarrow{a}$共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求 $\overrightarrow{OA}$•$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[-2,2]内任取一个实数x,在区间[0,4]内任取一个实数y,则y≥x2的概率等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某苗圃对一批即将出售的树苗进行了抽样统计,得到苗高(单位:cm)的频率分布直方图如图.若苗高属于区间[100,104)的有4株,则苗高属于区间[112,116]的有11株.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5=2+20x+10x2

查看答案和解析>>

同步练习册答案