精英家教网 > 高中数学 > 题目详情
14.某苗圃对一批即将出售的树苗进行了抽样统计,得到苗高(单位:cm)的频率分布直方图如图.若苗高属于区间[100,104)的有4株,则苗高属于区间[112,116]的有11株.

分析 根据频率分布直方图,利用频率=$\frac{频数}{样本容量}$,即可求出对应的值.

解答 解:根据频率分布直方图知,在区间[100,104)内的频率为0.02×4=0.08,频数为4,
所以样本容量为$\frac{4}{0.08}$=50;
所以在区间[112,116]内的频率为1-(0.02+0.075+0.1)×4=0.22,
频数为50×0.22=11,即有11株.
故答案为:11.

点评 本题考查了频率分布直方图与频率=$\frac{频数}{样本容量}$的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.记Sn=1+2+3+…+n,Tn=12+22+32+…+n2
(Ⅰ)试计算$\frac{S_1}{T_1}$,$\frac{S_2}{T_2}$,$\frac{S_3}{T_3}$的值,并猜想$\frac{S_n}{T_n}$的通项公式.
(Ⅱ)根据(Ⅰ)的猜想试计算Tn的通项公式,并用数学归纳法证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数学归纳法证明命题“当n为正奇数时,xn+yn能被x+y整除”,第二步假设n=2k-1(k∈N+)命题为真时,进而需证n=2k+1时,命题亦真.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在${(x-\frac{2}{x})^5}$的展开式中,x的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-2x在区间[$\begin{array}{l}{0,+∞}\end{array}$)上单调递增,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.(?p)∧(?q)D.(?p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如表所示:
 x(月份) 1 2 3 4 5
 y(万盒) 4 4 5 6
若x,y线性相关,线性回归方程为$\stackrel{∧}{y}$=0.6x+$\stackrel{∧}{a}$,估计该药厂6月份生产甲胶囊产量为(  )
A.6.8万盒B.7.0万盒C.7.2万盒D.7.4万盒

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=1,an+1=2an-3(n∈N*),则数列{an}的通项公式为an=3-2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为研究心理健康与是否是留守儿童的关系,某小学在本校四年级学生中抽取了一个110人的样本,其中留守儿童有40人,非留守儿童有70人,对他们进行了心理测试,并绘制了如图的等高条形图,试问:能否在犯错误的概率不超过0.001的前提下认为心理健康与是否是留守儿童有关系?
参考数据:
 P(K2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在平面坐标系内,O为坐标原点,向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),点M为直线OP上的一个动点.
(I)当$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值时,求向量$\overrightarrow{OM}$的坐标;
(II)在点M满足(I)的条件下,求∠AMB的余弦值.

查看答案和解析>>

同步练习册答案