精英家教网 > 高中数学 > 题目详情
2.在${(x-\frac{2}{x})^5}$的展开式中,x的系数为40.

分析 在二项展开式的通项公式中,令x的幂指数等于1,求出r的值,即可求得开式中x的系数.

解答 解:二项式的展开式的通项公式为 Tr+1=C5r•(-2)r•x5-2r
令5-2r=1,求得 r=2,
∴二项式的展开式中x的系数为C52•(-2)2=40,
故答案为:40.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.M是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,以Fx为始边,FM为终边的角∠xFM=60°,若|FM|=4,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(3,-6),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.4C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow{a}$=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t).(1)若 $\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量 $\overrightarrow{OB}$;
(2)若向量 $\overrightarrow{AC}$与向量 $\overrightarrow{a}$共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求 $\overrightarrow{OA}$•$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[-2,2]内任取一个实数x,在区间[0,4]内任取一个实数y,则y≥x2的概率等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若tanα=2,则sin2α=(  )
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某苗圃对一批即将出售的树苗进行了抽样统计,得到苗高(单位:cm)的频率分布直方图如图.若苗高属于区间[100,104)的有4株,则苗高属于区间[112,116]的有11株.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.高二学生即将升入高三,高三学生参加高校自主招生考试是升入理想大学的一条途径.甲、乙、丙三位同学一起参某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲中、乙、丙三位同学的平时成绩分析,甲,乙,丙三位同学能通过笔试的概率分别是$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{5}$;能通过面试的概率分别是$\frac{1}{5}$,$\frac{1}{4}$,$\frac{1}{2}$.
(1)求甲、乙、丙三位同学恰有两位通过笔试的概率;
(2)设甲、乙、丙三位同学各自经过两次考试后,能被该高校录取的人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC的三边比为3:5:7,则这个三角形的最大角的正切值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案