精英家教网 > 高中数学 > 题目详情
7.若tanα=2,则sin2α=(  )
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

分析 利用同角三角函数的基本关系,二倍角公式,求得sin2α的值.

解答 解:∵tanα=2,则sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα}{{tan}^{2}α+1}$=$\frac{4}{4+1}$=$\frac{4}{5}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+cos2x+1.
(Ⅰ)求f(x)的递减区间;
(Ⅱ)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求f(x)的最值,并指出取得最值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知条件p:x2-3x-4≤0,条件q:|x-3|≤m,若¬q是¬p的充分不必要条件,则实数m的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{-3+i}{2+i}$的模是(  )
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在${(x-\frac{2}{x})^5}$的展开式中,x的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右顶点为A1,A2,抛物线E以坐标原点为顶点,以A2为焦点.若双曲线C的一条渐近线与抛物线E及其准线分别交于点M,N,若$\overrightarrow{M{A_2}}⊥\overrightarrow{{A_1}{A_2}}$,∠MA1N=135°,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如表所示:
 x(月份) 1 2 3 4 5
 y(万盒) 4 4 5 6
若x,y线性相关,线性回归方程为$\stackrel{∧}{y}$=0.6x+$\stackrel{∧}{a}$,估计该药厂6月份生产甲胶囊产量为(  )
A.6.8万盒B.7.0万盒C.7.2万盒D.7.4万盒

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
参考数据:(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+1×0.5+2×0.9+3×1.6=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某厂有一个新工人生产5件产品中有3件合格品,其余为次品,现从这5件产品中任取2件,恰有一件合格品的概率为$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案