精英家教网 > 高中数学 > 题目详情
17.某厂有一个新工人生产5件产品中有3件合格品,其余为次品,现从这5件产品中任取2件,恰有一件合格品的概率为$\frac{3}{5}$.

分析 先求出基本事件总数,再求出恰有一件合格品包含的基本事件个数,由此能求出恰有一件合格品的概率.

解答 解:某厂有一个新工人生产5件产品中有3件合格品,其余为次品,
现从这5件产品中任取2件,
基本事件总数n=${C}_{5}^{2}=10$,
恰有一件合格品包含的基本事件个数m=${C}_{3}^{1}{C}_{2}^{1}$=6,
∴恰有一件合格品的概率p=$\frac{m}{n}$=$\frac{6}{10}=\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求数,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若tanα=2,则sin2α=(  )
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正数数列{an}的前n项和为Sn,点P(an,Sn)在函数f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x上,已知b1=1,3bn-2bn-1=0(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)若cn=anbn,求数列{cn}的前n项和Tn
(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M-m=9,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=log2x,若f(x)的导数f′(x0)=1,则x0=(  )
A.2eB.e2C.log2eD.loge2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC的三边比为3:5:7,则这个三角形的最大角的正切值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}$,则f[f(${\frac{1}{4}}$)]的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 储蓄存款y(千亿元) 5 6 7 8 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到如表2:
表2
 时间代号t 1 3 4 5
 z 0 1 2 3 5
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正方体ABCD-A1B1C1D1的棱长为4,点E是线B1C段的中点,则三棱锥A-DED1外接球的体积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=$\frac{1}{3}$,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$(n≥2,n∈N+).
(Ⅰ)求a2,a3,a4的值,并猜想数列{an}的通项公式an
(Ⅱ)用数学归纳法证明你猜想的结论.

查看答案和解析>>

同步练习册答案