精英家教网 > 高中数学 > 题目详情
5.已知f(x)=log2x,若f(x)的导数f′(x0)=1,则x0=(  )
A.2eB.e2C.log2eD.loge2

分析 根据函数的导数公式建立方程进行求解即可.

解答 解:∵f(x)=log2x,
∴函数的导数f′(x)=$\frac{1}{xln2}$,
由f′(x0)=1,得$\frac{1}{{x}_{0}ln2}$=1,
即x0=$\frac{1}{ln2}$=log2e,
故选:C

点评 本题主要考查函数的导数的应用,根据函数的导数公式建立方程问题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{-3+i}{2+i}$的模是(  )
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
参考数据:(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+1×0.5+2×0.9+3×1.6=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.天气预报,端午节假期甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之间没有影响,则其中至少一个地方降雨的概率为(  )
A.0.015B.0.005C.0.985D.0.995

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF与平面AEF所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A+B=$\frac{5}{4}$π,且A、B≠kπ+$\frac{π}{2}$(k∈Z).
(Ⅰ)求证:(1+tanA)(1+tanB)=2;
(Ⅱ)求tan$\frac{5}{8}$π的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某厂有一个新工人生产5件产品中有3件合格品,其余为次品,现从这5件产品中任取2件,恰有一件合格品的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=9.
(1)求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)求|$\overrightarrow a$+$\overrightarrow b$|和cos<$\overrightarrow a$,$\overrightarrow a$+$\overrightarrow b$>的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=3sin(2x+$\frac{π}{4}}$),x∈[0,$\frac{π}{2}}$]的单调增区间为[0,m],则实数m的值为$\frac{π}{8}$.

查看答案和解析>>

同步练习册答案