精英家教网 > 高中数学 > 题目详情
20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF与平面AEF所成的二面角的正弦值.

分析 (Ⅰ)推导出AB∥CD,从而AB∥面PCD,由此能证明AB∥EF.
(Ⅱ)取AD中点G,连接PG,GB,以G为原点,GA、GB、GP所在直线为坐标轴建立空间直角坐标系G-xyz,利用向量法能求出平面PAF与平面AFE所成的二面角的正弦值.

解答 证明:(Ⅰ)∵底面ABCD是菱形,∴AB∥CD,
又∵AB?面PCD,CD?面PCD,∴AB∥面PCD…(2分)
又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,
∴AB∥EF…(4分)
解:(Ⅱ)取AD中点G,连接PG,GB,∵PA=PD,∴PG⊥AD,
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD…(5分)
∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中点,∴AD⊥GB,
如图,以G为原点,GA、GB、GP所在直线为坐标轴建立空间直角坐标系G-xyz…(6分)
由PA=PD=AD=2得,G(0,0,0),A(1,0,0),
$B(0,\sqrt{3},0)$,$C(-2,\sqrt{3},0)$,D(-1,0,0),$P(0,0,\sqrt{3})$…(7分)
又∵AB∥EF,点E是棱PC中点,∴点F是棱PD中点,
∴$F(-\frac{1}{2},0,\frac{{\sqrt{3}}}{2})$,$\overrightarrow{AF}=(-\frac{3}{2},0,\frac{{\sqrt{3}}}{2})$,$\overrightarrow{AB}=(-1,\sqrt{3},0)$,
设平面AFE的法向量为$\overrightarrow n=(x,y,z)$,
则有$\left\{\begin{array}{l}\overrightarrow{n}•\overrightarrow{AF}=0\\ \overrightarrow{n}•\overrightarrow{AB}=0\end{array}\right.$,∴$\left\{{\begin{array}{l}{z=\sqrt{3}x}\\{y=\frac{{\sqrt{3}}}{3}x}\end{array}}\right.$,
不妨令x=3,则平面AFE的一个法向量为$\overrightarrow n=(3,\sqrt{3},3\sqrt{3})$,…(9分)
∵BG⊥平面PAD,∴$\overrightarrow{GB}=(0,\sqrt{3},0)$是平面PAF的一个法向量,…(10分)
$|cos<\overrightarrow{n},\overrightarrow{GB}>|=\frac{{|\overrightarrow{n}•\overrightarrow{GB}|}}{{|\overrightarrow{n}|•|\overrightarrow{GB}|}}=\frac{3}{{\sqrt{39}×\sqrt{3}}}=\frac{{\sqrt{13}}}{13}$,…(11分)
∴平面PAF与平面AFE所成的二面角的正弦值为:
$sin<\overrightarrow n,\overrightarrow{GB}>=\sqrt{1-{{cos}^2}<\overrightarrow n,\overrightarrow{GB}>}=\frac{{2\sqrt{39}}}{13}$.…(12分)

点评 本题考查直线与直线平行的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow{a}$=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t).(1)若 $\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量 $\overrightarrow{OB}$;
(2)若向量 $\overrightarrow{AC}$与向量 $\overrightarrow{a}$共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求 $\overrightarrow{OA}$•$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.高二学生即将升入高三,高三学生参加高校自主招生考试是升入理想大学的一条途径.甲、乙、丙三位同学一起参某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲中、乙、丙三位同学的平时成绩分析,甲,乙,丙三位同学能通过笔试的概率分别是$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{5}$;能通过面试的概率分别是$\frac{1}{5}$,$\frac{1}{4}$,$\frac{1}{2}$.
(1)求甲、乙、丙三位同学恰有两位通过笔试的概率;
(2)设甲、乙、丙三位同学各自经过两次考试后,能被该高校录取的人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正数数列{an}的前n项和为Sn,点P(an,Sn)在函数f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x上,已知b1=1,3bn-2bn-1=0(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)若cn=anbn,求数列{cn}的前n项和Tn
(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M-m=9,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5=2+20x+10x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=log2x,若f(x)的导数f′(x0)=1,则x0=(  )
A.2eB.e2C.log2eD.loge2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC的三边比为3:5:7,则这个三角形的最大角的正切值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 储蓄存款y(千亿元) 5 6 7 8 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到如表2:
表2
 时间代号t 1 3 4 5
 z 0 1 2 3 5
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数fn(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2,a3,a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证:$\frac{1}{{{{(2{a_1}-5)}^2}}}$+$\frac{1}{{{{(2{a_2}-5)}^2}}}$+…+$\frac{1}{{{{(2{a_n}-5)}^2}}}$<$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案