分析 利用分段函数定义得f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,由此能求出f[f(${\frac{1}{4}}$)]的值.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
则f[f(${\frac{1}{4}}$)]=f(-2)=$(\frac{1}{3})^{-2}$=9.
故答案为:9.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数定义的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.015 | B. | 0.005 | C. | 0.985 | D. | 0.995 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com