精英家教网 > 高中数学 > 题目详情
6.已知正方体ABCD-A1B1C1D1的棱长为4,点E是线B1C段的中点,则三棱锥A-DED1外接球的体积为36π.

分析 三棱锥A-DED1外接球为四棱锥E-A1D1DA外接球,利用勾股定理建立方程,求出球的半径,即可求出三棱锥A-DED1外接球体.

解答 解:三棱锥A-DED1外接球为四棱锥E-A1D1DA外接球,
设球的半径为R,则R2=(2$\sqrt{2}$)2+(4-R)2
∴R=3,
∴三棱锥A-DED1外接球体积为$\frac{4}{3}π•{3}^{3}$=36π.
故答案为:36π.

点评 本题考查三棱锥A-DED1外接球体,考查学生的计算能力,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
参考数据:(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+1×0.5+2×0.9+3×1.6=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某厂有一个新工人生产5件产品中有3件合格品,其余为次品,现从这5件产品中任取2件,恰有一件合格品的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=9.
(1)求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)求|$\overrightarrow a$+$\overrightarrow b$|和cos<$\overrightarrow a$,$\overrightarrow a$+$\overrightarrow b$>的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x3+ax2+1,(a∈R).
(1)若f(x)图象上横坐标为1的点处存在垂直于y轴的切线,求a的值;
(2)若f(x)在区间(-1,2)内有两个不同的极值点,求a取值范围;
(3)当a=1时,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象于函数f(x)的图象恰有三个不同的交点,若存在,试求出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+cx(a≠0,a∈R,c∈R),当x=1时,f(x)取得极值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值;
(3)若对任意x1、x2∈[-1,1],不等式|f(x1)-f(x2)|≤t恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C所对的边分别为a、b、c,a=$\sqrt{3}$.
(Ⅰ)求bcosC+ccosB的值;
(Ⅱ)若cosA=$\frac{1}{2}$,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=3sin(2x+$\frac{π}{4}}$),x∈[0,$\frac{π}{2}}$]的单调增区间为[0,m],则实数m的值为$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E,G分别是BC,PE的中点
(1)求证:AD⊥PE
(2)求二面角E-AD-G的余弦值.

查看答案和解析>>

同步练习册答案