分析 (Ⅰ)利用余弦定理求得bcosC+ccosB的值.
(Ⅱ)若cosA=$\frac{1}{2}$,利用余弦定理以及基本不等式求得b+c的最大值.
解答 解:(Ⅰ)△ABC中,bcosC+ccosB=b•$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$+c•$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=a=$\sqrt{3}$,
(Ⅱ)若cosA=$\frac{1}{2}$,则A=$\frac{π}{3}$,由余弦定理可得a2=3=b2+c2-2bc•cosA=(b+c)2-3bc,
∴(b+c)2=3+3bc≤3+3•${(\frac{b+c}{2})}^{2}$,∴b+c≤2$\sqrt{3}$,当且仅当b=c时,取等号,故b+c的最大值为2$\sqrt{3}$.
点评 本题主要考查余弦定理,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| z | 0 | 1 | 2 | 3 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com