分析 (1)先求出函数的导数,再由f′(1)=0求解a.
(2)将“f(x)在区间(-1,2)内有两个不同的极值点”转化为“方程f′(x)=0在区间(-1,2)内有两个不同的实根”,用△>0求解.
(3)a=1,“要使函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点”即为“方程x2(x2-4x+1m)=0恰有三个不同的实根”.因为x=0是一个根,所以方程x2-4x+1-m=0应有两个非零的不等实根,再用判别式求解.
解答 解:(1)依题意,f′(1)=0
∵f′(x)=-3x2+2ax
-3(1)2+2•a•1=0,
∴a=$\frac{3}{2}$;
(2)若f(x)在区间(-1,2)内有两个不同的极值点,
则方程f′(x)=-3x2+2ax=0在区间(-1,2)内有两个不同的实根,
∴△>0,f′(-1)<0,f′(2)<0,-1<$\frac{a}{3}$<2,
解得:-$\frac{3}{2}$<a<3且a≠0
但a=0时,f(x)=-x3+1无极值点,
∴a的取值范围为(-$\frac{3}{2}$,0)∪(0,3);
(3)a=1时,f(x)=-x3+x2+1,
要使函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点,
等价于方程-x3+x2+1=x4-5x3+(2-m)x2+1,
即方程x2(x2-4x+1-m)=0恰有三个不同的实根.
∵x=0是一个根,
∴应使方程x2-4x+1-m=0有两个非零的不等实根,
由△=16-4(1-m)>0,1-m≠0,解得m>-3,m≠1,
∴存在m∈(-3,1)∪(1,+∞),
使用函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点.
点评 本题主要考查函数与方程的综合运用,主要涉及了方程的根与函数的零点间的转化.还考查了计算能力和综合运用知识的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| z | 0 | 1 | 2 | 3 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com