精英家教网 > 高中数学 > 题目详情
4.已知D为圆O:x2+y2=8上的动点,过点D向x轴作垂线DN,垂足为N,T在线段DN上且满足$|{TN}|:|{DN}|=1:\sqrt{2}$.
(1)求动点T的轨迹方程;
(2)若M是直线l:x=-4上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(3)若(2)中直线PQ与动点T的轨迹交于G,H两点,且$\overrightarrow{EG}=3\overrightarrow{HE}$,求此时弦PQ的长度.

分析 (1)利用代入法,求动点T的轨迹方程;
(2)设M(-4,m),则圆K方程为x(x+4)+y(y-m)=0与圆O:x2+y2=8联立消去x2,y2得PQ的方程为4x-my+8=0,能够证明直线PQ必过定点E,并求出点E的坐标;
(3)设G(x1,y1),H(x2,y2),则$\left\{\begin{array}{l}{{{x}_{1}}^{2}+2{{y}_{1}}^{2}=8}\\{{{x}_{2}}^{2}+2{{y}_{2}}^{2}=8}\end{array}\right.$,①,知(x1+2,y1)=3(-2-x2,-y2),结合向量求出PQ的方程,由此入手能够求出弦PQ的长.

解答 解:(1)设T(x,y),则|DN|=$\sqrt{2}$|TN|,
∵D为圆O:x2+y2=8上的动点,
∴x2+($\sqrt{2}$y)2=8,
∵|DN|≠0,∴y≠0,
∴动点T的轨迹方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1;
(2)设M(-4,m),则圆K方程为x(x+4)+y(y-m)=0
与圆O:x2+y2=8联立消去x2,y2得PQ的方程为4x-my+8=0,
令y=0,可得x=-2,得直线PQ过定点E(-2,0).
(3)设G(x1,y1),H(x2,y2),则$\left\{\begin{array}{l}{{{x}_{1}}^{2}+2{{y}_{1}}^{2}=8}\\{{{x}_{2}}^{2}+2{{y}_{2}}^{2}=8}\end{array}\right.$,①
∵$\overrightarrow{EG}=3\overrightarrow{HE}$,∴(x1+2,y1)=3(-2-x2,-y2),即:x1=-8-3x2,y1=-3y2
代入①解得:x2=-$\frac{8}{3}$,y2=±$\frac{2}{3}$(舍去正值),∴kPQ=1,所以PQ:x-y+2=0,
从而圆心O(0,0)到直线PQ的距离d=$\sqrt{2}$,
∴PQ=2$\sqrt{8-2}$=2$\sqrt{6}$.

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x3+ax2+1,(a∈R).
(1)若f(x)图象上横坐标为1的点处存在垂直于y轴的切线,求a的值;
(2)若f(x)在区间(-1,2)内有两个不同的极值点,求a取值范围;
(3)当a=1时,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象于函数f(x)的图象恰有三个不同的交点,若存在,试求出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,设角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$sinA+cosA=2,a=3,C=$\frac{5π}{12}$,则b=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点.

(1)求证:PO⊥平面ABCD;
(2)若E为线段PA上一点,且$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AP}$,求二面角P-OE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{1}{2}$ax+a-2,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(x)=xf(x)+2,求证:当a<ln$\frac{2}{e}$时,g(x)>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是边长为2的正方形,又PA=PD,∠APD=60°,E,G分别是BC,PE的中点
(1)求证:AD⊥PE
(2)求二面角E-AD-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC.
(2)求证:平面MOC⊥平面VAB.
(3)求二面角C-VB-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD为直角梯形,AD∥BC,且BC=$\frac{1}{2}$AD=1,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设$\frac{PM}{MC}$=k(M与C不重合)
(Ⅰ)求证:CD⊥DP;
(Ⅱ)若PA∥平面BME,求k的值;
(Ⅲ)若二面角M-BE-A的平面角为150°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是丙.

查看答案和解析>>

同步练习册答案