精英家教网 > 高中数学 > 题目详情
12.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点.

(1)求证:PO⊥平面ABCD;
(2)若E为线段PA上一点,且$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AP}$,求二面角P-OE-C的余弦值.

分析 (1)设F为DC的中点,连接BF,推导出四边形ABFD为正方形,PO⊥BD,PO⊥AO,由此能证明PO⊥平面ABCD.
(2)过O分别做AD,AB的平行线,以它们做x,y轴,以OP为z轴,建立空间直角坐标系,利用向量法能求出二面角P-OE-C的余弦值.

解答 证明:(1)设F为DC的中点,连接BF,则DF=AB,
∵AB⊥AD,AB=AD,AB∥DC,
∴四边形ABFD为正方形,
∵O为BD的中点,∴O为AF,BD的交点,
∵PD=PB=2,∴PO⊥BD,
∵BD=$\sqrt{A{D}^{2}+A{B}^{2}}$=$\sqrt{4+4}$=2$\sqrt{2}$,
∴PO=$\sqrt{P{B}^{2}-B{O}^{2}}$=$\sqrt{4-2}$=$\sqrt{2}$,AO=$\frac{1}{2}BD=\sqrt{2}$,
在三角形PAO中,PO2+AO2=PA2=4,∴PO⊥AO,
∵AO∩BD=O,∴PO⊥平面ABCD.
(2)由(Ⅰ)知PO⊥平面ABCD,又AB⊥AD,
∴过O分别做AD,AB的平行线,以它们做x,y轴,以OP为z轴,
建立如图所示的空间直角坐标系,
由已知得:A(-1,-1,0),B(-1,1,0),D(1,-1,0),
F(1,1,0),C(1,3,0),P(0,0,$\sqrt{2}$),O(0,0,0),
设E(a,b,c),∵$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AP}$,∴(a+1,b+1,c)=($\frac{1}{3},\frac{1}{3},\frac{\sqrt{2}}{3}$),
∴$\left\{\begin{array}{l}{a+1=\frac{1}{3}}\\{b+1=\frac{1}{3}}\\{c=\frac{\sqrt{2}}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{2}{3}}\\{b=-\frac{2}{3}}\\{c=\frac{\sqrt{2}}{3}}\end{array}\right.$,∴E(-$\frac{2}{3}$,-$\frac{2}{3}$,$\frac{\sqrt{2}}{3}$),
$\overrightarrow{OE}$=(-$\frac{2}{3}$,-$\frac{2}{3}$,$\frac{\sqrt{2}}{3}$),$\overrightarrow{OP}$=(0,0,$\sqrt{2}$),$\overrightarrow{OC}$=(1,3,0)
设平面OPE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OP}=\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{OE}=-\frac{2}{3}x-\frac{2}{3}y+\frac{\sqrt{2}}{3}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
设平面OEC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{OE}=-\frac{2}{3}a-\frac{2}{3}b+\frac{\sqrt{2}}{3}c=0}\\{\overrightarrow{m}•\overrightarrow{OC}=a+3b=0}\end{array}\right.$,取a=3,得$\overrightarrow{m}$=(3,-1,2$\sqrt{2}$),
设二面角P-OE-C的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{2}•\sqrt{18}}$=$\frac{2}{3}$.
∴二面角P-OE-C的余弦值为$\frac{2}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 储蓄存款y(千亿元) 5 6 7 8 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到如表2:
表2
 时间代号t 1 3 4 5
 z 0 1 2 3 5
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数fn(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2,a3,a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证:$\frac{1}{{{{(2{a_1}-5)}^2}}}$+$\frac{1}{{{{(2{a_2}-5)}^2}}}$+…+$\frac{1}{{{{(2{a_n}-5)}^2}}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=$\frac{1}{3}$,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$(n≥2,n∈N+).
(Ⅰ)求a2,a3,a4的值,并猜想数列{an}的通项公式an
(Ⅱ)用数学归纳法证明你猜想的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设平面内有△ABC,且P表示这个平面内的动点,则属于集合{P|PA=PB}∩{P|PA=PC}的点是(  )
A.△ABC的重心B.△ABC的内心C.△ABC的外心D.△ABC的垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,当CD的斜率为-1时,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知D为圆O:x2+y2=8上的动点,过点D向x轴作垂线DN,垂足为N,T在线段DN上且满足$|{TN}|:|{DN}|=1:\sqrt{2}$.
(1)求动点T的轨迹方程;
(2)若M是直线l:x=-4上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(3)若(2)中直线PQ与动点T的轨迹交于G,H两点,且$\overrightarrow{EG}=3\overrightarrow{HE}$,求此时弦PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.正四棱柱ABCD-A1B1C1D1中,己知AA1=8,点E,F分别的棱BB1,CC1上,且满足AB=BE=3,FC1=2,则平面AEF与平面ABC所成的锐二面角的正切值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.用向量法解决下列问题:
(Ⅰ)若AC的中点为E,求A1C与DE所成的角;
(Ⅱ)求二面角B1-AC-D1(锐角)的余弦值.

查看答案和解析>>

同步练习册答案