精英家教网 > 高中数学 > 题目详情
4.已知在平面坐标系内,O为坐标原点,向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),$\overrightarrow{OP}$=(2,1),点M为直线OP上的一个动点.
(I)当$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值时,求向量$\overrightarrow{OM}$的坐标;
(II)在点M满足(I)的条件下,求∠AMB的余弦值.

分析 (Ⅰ)设出$\overrightarrow{OM}=({x,y})$,利用平面向量的坐标表示与运算法则,即可求出对应$\overrightarrow{OM}$的值;
(Ⅱ)利用平面向量的夹角余弦公式,即可求出对应的余弦值.

解答 解:(Ⅰ)设$\overrightarrow{OM}=({x,y})$,
∵点M为直线OP上的一个动点,
∴向量$\overrightarrow{OM}$与$\overrightarrow{OP}$共线,
∴x-2y=0;
即$\overrightarrow{OM}=({2y,y})$,…(2分)
∴$\overrightarrow{MA}$=$\overrightarrow{OA}$-$\overrightarrow{OM}$=(1-2y,7-y),
$\overrightarrow{MB}$=(5-2y,1-y),
∴$\overrightarrow{MA}•\overrightarrow{MB}=({1-2y})({5-2y})+({7-y})({1-y})=5{({y-2})^2}-8$;…(4分)
∴当且仅当y=2时得${({\overrightarrow{MA}•\overrightarrow{MB}})_{min}}=-8$,此时$\overrightarrow{OM}=({4,2})$;…(6分)
(Ⅱ)当$\overrightarrow{OM}=({4,2})$时,$\overrightarrow{MA}=({-3,5}),\overrightarrow{MB}=({1,-1})$;…(7分)
∴$cos∠AMB=\frac{{\overrightarrow{MA}•\overrightarrow{MB}}}{{|{\overrightarrow{MA}}|•|{\overrightarrow{MB}}|}}$=$\frac{-8}{\sqrt{34}-\sqrt{2}}$=-$\frac{4\sqrt{17}}{17}$;…(9分)
∴∠AMB的余弦值为$-\frac{{4\sqrt{17}}}{17}$.…(10分)

点评 本题考查了平面向量的坐标表示与运算问题,也考查了学生的计算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某苗圃对一批即将出售的树苗进行了抽样统计,得到苗高(单位:cm)的频率分布直方图如图.若苗高属于区间[100,104)的有4株,则苗高属于区间[112,116]的有11株.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5=2+20x+10x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC的三边比为3:5:7,则这个三角形的最大角的正切值是(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}当n≥2时满足$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,且a3a5a7=$\frac{1}{24}$,$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{7}}$=9,Sn是数列{$\frac{1}{{a}_{n}}$}的前n项和,则S4=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 储蓄存款y(千亿元) 5 6 7 8 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到如表2:
表2
 时间代号t 1 3 4 5
 z 0 1 2 3 5
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有(  )
A.18个B.27个C.36个D.60个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在正方体ABCD-A1B1C1D1中,平面A1B1CD与平面ABCD所成二面角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设平面内有△ABC,且P表示这个平面内的动点,则属于集合{P|PA=PB}∩{P|PA=PC}的点是(  )
A.△ABC的重心B.△ABC的内心C.△ABC的外心D.△ABC的垂心

查看答案和解析>>

同步练习册答案