精英家教网 > 高中数学 > 题目详情
4.记Sn=1+2+3+…+n,Tn=12+22+32+…+n2
(Ⅰ)试计算$\frac{S_1}{T_1}$,$\frac{S_2}{T_2}$,$\frac{S_3}{T_3}$的值,并猜想$\frac{S_n}{T_n}$的通项公式.
(Ⅱ)根据(Ⅰ)的猜想试计算Tn的通项公式,并用数学归纳法证明之.

分析 (Ⅰ)代值计算即可,由此猜想$\frac{S_n}{T_n}=\frac{3}{2n+1}({n∈{N^*}})$,
(Ⅱ)由(Ⅰ)可以猜想${T_n}=\frac{n(n+1)(2n+1)}{6}$均成立,利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成

解答 解:(Ⅰ)$\frac{S_1}{T_1}=\frac{1}{1^2}=1=\frac{3}{3}$$\frac{S_2}{T_2}=\frac{1+2}{{{1^2}+{2^2}}}=\frac{3}{5}$$\frac{S_3}{T_3}=\frac{1+2+3}{{{1^2}+{2^2}+{3^2}}}=\frac{6}{14}=\frac{3}{7}$
猜想:$\frac{S_n}{T_n}=\frac{3}{2n+1}({n∈{N^*}})$,
(Ⅱ)根据(Ⅰ)的猜想:$\frac{S_n}{T_n}=\frac{3}{2n+1}({n∈{N^*}})$
又${S_n}=1+2+3+…+n=\frac{n(n+1)}{2}$,
故${T_n}={S_n}•\frac{2n+1}{3}=\frac{n(n+1)}{2}•\frac{2n+1}{3}=\frac{n(n+1)(2n+1)}{6}$(n∈N*),
证明:①当(Ⅱ)时,左边T1=1,右边=$\frac{1×2×3}{6}=1$左边=右边,猜想成立.
②假设n=k时,猜想成立.即${T_k}=\frac{k(k+1)(2k+1)}{6}$成立.
则当n=k+1时,${T_{k+1}}={T_k}+{(k+1)^2}$=$\frac{k(k+1)(2k+1)}{6}+{(k+1)^2}$,
=$\frac{{(k+1)[{k(2k+1)+6(k+1)}]}}{6}$=$\frac{{(k+1)({2{k^2}+7k+6})}}{6}$,
=$\frac{(k+1)(k+2)(2k+3)}{6}$=$\frac{{(k+1)[{(k+1)+1}][{2({k+1})+1}]}}{6}$,
∴当n=k+1时,猜想也成立.
由①②知对于任意的n∈N*,${T_n}=\frac{n(n+1)(2n+1)}{6}$均成立.

点评 本题主要考查归纳推理,数学归纳法.考查运算化简能力、推理论证能力、化归转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,己知a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{{2}^{n-1}}$(n≥2且n∈N*
(1)若bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)记数列{an}的前项和为Sn,问在△ABC中是否存在内角θ使Sn-n•tan2θ+5≥$\frac{n+2}{{2}^{n-1}}$对任意的n∈N*恒成立,若存在,求出角θ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义一种运算a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,令f(x)=(3x2+6x)?(2x+3-x2),则函数f(x)的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.M是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,以Fx为始边,FM为终边的角∠xFM=60°,若|FM|=4,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若向量$\overrightarrow a$=(1,x,0),$\overrightarrow b$=(2,-1,2),$\overrightarrow a$,$\overrightarrow b$夹角的余弦值为$\frac{\sqrt{2}}{6}$,则x等于(  )
A.-1B.1C.1或7D.-1或-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x<-1,x2>1,则命题¬p是(  )
A.:?x≥-1,x2≤1B.?x<-1,x2≤1C.:?x<-1,x2≤1D.?x≥-1,x2≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{-8x(x-2),1≤x<2}\\{\frac{1}{2}f(\frac{x}{2}),x≥2}\end{array}\right.$给出下列结论:
①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23-n
③存在k∈($\frac{1}{8}$,$\frac{1}{4}$),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)⊆(2n,2n+1)”
其中正确命题的序号是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(3,-6),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.4C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某苗圃对一批即将出售的树苗进行了抽样统计,得到苗高(单位:cm)的频率分布直方图如图.若苗高属于区间[100,104)的有4株,则苗高属于区间[112,116]的有11株.

查看答案和解析>>

同步练习册答案