精英家教网 > 高中数学 > 题目详情
16.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{-8x(x-2),1≤x<2}\\{\frac{1}{2}f(\frac{x}{2}),x≥2}\end{array}\right.$给出下列结论:
①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23-n
③存在k∈($\frac{1}{8}$,$\frac{1}{4}$),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)⊆(2n,2n+1)”
其中正确命题的序号是(  )
A.①②③B.①③④C.①②④D.②③④

分析 ①根据分段函数的表达式结合函数的最值进行求解判断,
②利用f(2n)=$\frac{1}{{2}^{n}}$f(1)进行求解判断,
③作出函数f(x)和y=kx的图象,利用数形结合进行判断,
④根据分段函数的单调性进行判断.

解答 解:①当1≤x<2时,f(x)=-8x(x-2)=-8(x-1)2+8∈(0,8],
②∵f(1)=8,
∴f(2n)=$\frac{1}{2}$f(2n-1)=$\frac{1}{{2}^{2}}$f(2n-2)=$\frac{1}{{2}^{3}}$f(2n-3)=…=$\frac{1}{{2}^{n}}$f(20)=$\frac{1}{{2}^{n}}$f(1)=$\frac{1}{{2}^{n}}$×8=23-n,故②正确,
③当x≥2时,f(x)=$\frac{1}{2}$f($\frac{x}{2}$)∈0,4],故函数f(x)的值域为(0,8];故①正确,
当2≤x<4时,1≤$\frac{x}{2}$<2,则f(x)=$\frac{1}{2}$f($\frac{x}{2}$)=$\frac{1}{2}$[-8($\frac{x}{2}$-1)2+8]=-4($\frac{x}{2}$-1)2+4,
当4≤x<8时,2≤$\frac{x}{2}$<4,则f(x)=$\frac{1}{2}$f($\frac{x}{2}$)=$\frac{1}{2}$[-4($\frac{x}{4}$-1)2+4]=-2($\frac{x}{4}$-1)2+2
作出函数f(x)的图象如图:
作出y=$\frac{1}{4}$x和y=$\frac{1}{8}$x的图象如图,

当k∈($\frac{1}{8}$,$\frac{1}{4}$),使得直线y=kx与函数y=f(x)的图象有3个公共点;故③错误,
④由分段函数的表达式得当x∈(2n,2n+1)时,函数f(x)在(2n,2n+1)上为单调递减函数,
则函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)⊆(2n,2n+1)”为真命题.,故④正确,
故选:C

点评 本题主要考查命题的真假判断,涉及分段函数的图象和性质,作出函数的图象以及利用函数递推关系是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值2,那么此函数在[-2,2]上最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)=e2x,若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,则g(x)=(  )
A.2lnxB.$\frac{1}{2}$lnxC.ln(2x)D.ln($\frac{1}{2}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.记Sn=1+2+3+…+n,Tn=12+22+32+…+n2
(Ⅰ)试计算$\frac{S_1}{T_1}$,$\frac{S_2}{T_2}$,$\frac{S_3}{T_3}$的值,并猜想$\frac{S_n}{T_n}$的通项公式.
(Ⅱ)根据(Ⅰ)的猜想试计算Tn的通项公式,并用数学归纳法证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x3+ax2+bx+c,给出四个结论:
①函数f(x)一定有两个极值点.
②若x=x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减.
③f(x)的图象是中心对称图形.
④若f′(x0)=0,则x=x0是f(x)的极值点.
则结论正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“?x∈R,使x2+x+1<0”的否定为:“?x∈R,使x2+x+1<0”
C.命题“若f(x)=$\frac{1}{3}$x3-2x2+4x+2,则2是函数f(x)的极值点”为真命题
D.命题“若抛物线的方程为y=-4x2,则焦点到其准线的距离为$\frac{1}{8}$”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在区间[-$\frac{π}{4}$,$\frac{2π}{3}$]上任取一个数x,则函数f(x)=3sin(2x-$\frac{π}{6}$)的值不小于0的概率为$\frac{6}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数学归纳法证明命题“当n为正奇数时,xn+yn能被x+y整除”,第二步假设n=2k-1(k∈N+)命题为真时,进而需证n=2k+1时,命题亦真.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=1,an+1=2an-3(n∈N*),则数列{an}的通项公式为an=3-2n

查看答案和解析>>

同步练习册答案