精英家教网 > 高中数学 > 题目详情

【题目】分别求出适合下列条件的直线方程:
(Ⅰ)经过点且在x轴上的截距等于在y轴上截距的2倍;
(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.

【答案】解:(Ⅰ)当直线不过原点时,设所求直线方程为+=1,
将(﹣3,2)代入所设方程,解得a=,此时,直线方程为x+2y﹣1=0.
当直线过原点时,斜率k=﹣,直线方程为y=﹣x,即2x+3y=0,
综上可知,所求直线方程为x+2y﹣1=0或2x+3y=0.
(Ⅱ)有解得交点坐标为(1,),
当直线l的斜率k存在时,设l的方程是y﹣=k(x﹣1),即7kx﹣7y+(2﹣7k)=0,
由A、B两点到直线l的距离相等得=
解得k=,当斜率k不存在时,即直线平行于y轴,方程为x=1时也满足条件.
所以直线l的方程是21x﹣28y﹣13=0或x=1
【解析】(Ⅰ)分别讨论直线过原点和不过原点两种情况,设出直线方程,解出即可;
(Ⅱ)先求出直线的交点坐标,设出直线方程,再根据点到直线的距离公式求出斜率k即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图几何体中,矩形所在平面与梯形所在平面垂直,且 的中点.

(1)证明: 平面

(2)证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王明参加某卫视的闯关活动,该活动共3关.设他通过第一关的概率为0.8,通过第二、第三关的概率分别为pq,其中,并且是否通过不同关卡相互独立.记ξ为他通过的关卡数,其分布列为:

ξ

0

1

2

3

P

0.048

a

b

0.192

(Ⅰ)求王明至少通过1个关卡的概率;

(Ⅱ)求pq的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线l与椭圆交于MN两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱平面 ,点的中点

(1)证明: 平面

(2)在线段上找一点,使得直线所成角的为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc>0,则在下列各选项中,二次函数f(x)=ax2+bx+c的图象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中的值;

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形中, ,点中点,沿折起至,如下图所示,点在面的射影落在上.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,其中,等边所在平面与平面垂直.

(Ⅰ)点在棱上,且的重心,求证:平面

)求三棱锥的体积.

查看答案和解析>>

同步练习册答案