精英家教网 > 高中数学 > 题目详情
对于x,y∈R,定义运算?:x?y=x(1-y),若?x∈R,(x-a)?(x+a)-1<0,则实数a的取值范围是(  )
A、[-
3
2
, 
1
2
]
B、(-
3
2
, 
1
2
)
C、[-
1
2
, 
3
2
]
D、(-
1
2
, 
3
2
)
考点:其他不等式的解法
专题:计算题,新定义,不等式的解法及应用
分析:利用新定义化简不等式可得到a2-a-1<x2-x恒成立,只需a2-a-1小于x2-x的最小值即可,由二次函数求最值可得a的不等式,解不等式可得.
解答: 解:由已知(x-a)?(x+a)-1<0,对任意实数x成立,
∴(x-a)(1-x-a)<1对任意实数x成立,
即a2-a-1<x2-x对任意实数x成立.
令t=x2-x,只要a2-a-1<tmin
t=x2-x=(x-
1
2
2-
1
4
,当x∈R,t≥-
1
4

∴a2-a-1<-
1
4
,即4a2-4a-3<0,
解得:-
1
2
<a<
3
2

故选:D.
点评:本题考查新定义,涉及一元二次不等式的解集和恒成立问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知n∈N*,数列{dn}满足dn=
3+(-1)n
2
,数列{an}满足an=d1+d2+d3+…+d2n;又知数列{bn}中,b1=2,且对任意正整数m,n,bnm=bmn
(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}前2014项的和T2014

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x-2sinx,x∈[-
π
2
π
2
]的大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

球的两个平行截面的面积分别为5π、8π,两截面间的距离为1,求球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
b
+
1
2
,其中
a
=(
3
sinx-cosx,-1)
b
=(cosx,1)

(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设△ABC的内角A,B,C的对边分别是a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-1)2+(y-2)2=4上的点到直线x-y+5=0的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解集为{x|0<x<2}的不等式(组)为(  )
A、1<2x+1<3
B、|x-1|<1
C、x2-x>0
D、
x-1<0
x-3<0

查看答案和解析>>

科目:高中数学 来源: 题型:

A
2
6
=(  )
A、10B、30C、60D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x-
π
6
)
(0<x<
π
2
)的值域为(  )
A、(0,1)
B、(0, 
1
2
)
C、(-
1
2
, 
1
2
)
D、(-
1
2
, 1]

查看答案和解析>>

同步练习册答案